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SECTION 1

Introduction

An improvement to the Uniform Geometrical Theory of Diffraction (UTD) is devel-
oped for determining the high frequency electromagnetic fields near the caustic caused
by the curvature of an edge. This improved solution will be referred to as a caustic
corrected UTD (CC-UTD). Although the UTD of Kouyoumjian and Pathak [1] cor-
rectly compensates for the discontinuities of the Geometrical Optics (GO) fields, it
does not correct for caustics created by a curved edge. In particular, a flat plate with
a curved edge that is symmetric about a line will create caustics in the diffracted
fields. A caustic will occur when the source or observation point is in the near-zone.
In this case, there are two smooth causticé caused by the diffracted rays that form
a cusp in the plane of symmetry. In terms of the UTD, the two caustics are created
when two diffraction points merge (coalesce). The cusp of these caustics is formed
when three diffraction points coalesce. There are two different regions in the plane of
symmetry. The caustic lit region is the region where there are three distinct diffrac-
tion points that merge at the cusp. There is just one diffraction point on the other
side of the cusp. This is called the caustic shadow region.

In the past, much effort as been spent on analyzing the far-zone diffraction from
objects with curved edges and curved apertures in plane screens. Many of these
solutions have been obtained using electric and magnetic current elements that flow
along the curved edge. These currents are called equivalent currents because they
represent the distributed effects of the surface current on the faces of the wedge.

Many far-zone solutions have been obtained using this type of solution.




Millar [2, 3] used equivalent currents to determine the far-zone transmission of
a plane wave through apertures in plane screens. Equivalent currents are derived
and applied to the transmission through a circular aperture in [2]. Later, in [3], the
transmission through more general curved apertures is discussed and the special case -
of an elliptic aperture is analyzed.

A similar equivalent current solution was used by Ryan and Peters [4, 5] to obtain
edge diffracted fields in the axial caustic regions of circular disks and cones. The
equivalent currents used by Ryan and Peters are not only valid for half-plane diffrac-
tion but also wedge diffraction. These equivalent currents were also generalized to try
and account for obliquely diffracted waves. Many other solutions have been obtained
using the equivalent currents of Ryan and Peters.

The scattering by a finite cone has been studied extensively using equivalent cur-
rents. Burnside and Peters [6, 7] analyzed the scattering by a cone using equivalent
currents to determine the fields in the axial caustic regions and to include higher-
order diffraction mechanisms. Also, creeping wave excited diffractions on a cone is
analyzed by Choi, Wang, Peters and Levy [8]. All of these solutions are valid for the
far-zone scattering of a plane wave by a finite length cone.

Several heuristic modifications to the Ryan and Peters equivalent currents have
been proposed. First, Knott and Senior [9], proposed the substitution sin’f =
sin Bsin B’ to enforce reciprocity. Next, it was discovered that these equivalent cur-
rents tend to account for the surface more than one time. Sikta and Peters ‘[10] used
a modified edge vector to heuristically correct for this problem. This modified edge
vector is commonly called a stripping vector. Finally, the Ryan and Peters equivalent
currents are only valid for far-zone diffraction problems. To use this concept to ana-
lyze near-zone problems, the GTD diffraction coefficients are replaced with the UTD
diffraction coefficients. This modification was first made by Greer and Burnside [11]
and later by Albertsen, Balling and Jensen [12].

Greer and Burnside [11] used the equivalent current concept in the near-zone
to predict the high frequency fields in the caustic regions. This solution consists

of the formulation of a diffraction integral using equivalent currents and numerically




integrating them to obtain the diffracted field contribution to the total field. Although
their solution accurately predicts the field in and away from the caustic regions, the
physical insight that is gained from a ray optical solution is not obtained. Also, this
solution can take a considerable amount of computer time because the diffraction
integral is integrated numerically.

Later; Albertsen, Balling and Jensen [12] developed an equivalent current solution
and obtained approximate ray optical expressions. Their solution begins with the
development of a diffraction integral using near-zone equivalent currents similar to
Greer and Burnside. Next, they develop approximate ray optical expressions by
making some stationary phase approximations. However, they do not use uniform
asymptotic techniques so they do not obtain a complete or uniform solution. This
means that their solution is bounded in the caustic regions, but it does not reduce
to the classical UTD solution away from the caustic. Therefore, this solution is only
applicable in the immediate vicinity of the caustics. The classical UTD solution must
be used away from the caustics. This makes for a cumbersome solution. They are
also unclear about where and how the two solutions should be blended.

Although the equivalent current solutions of Greer and Burnside or Albertsen,
Balling and Jensen do a good job of correcting for the diffracted field caustics, they do
not account for the regions where the reflection point is near the edge when diffraction
points are coalescing. This is not a problem in the far-zone because the reflected
field exists only along the specular direction. This phenomena is not accounted for
because the equivalent currents are derived for a straight edge and then applied to a
curved edge. We should not expect these equivalent currents alone to correct for this
phenomena since a straight edge has only one diffraction point and a curved edge has
more than one diffraction point in the near-zone.

In order to correct for the coalescence of reflection and diffraction points, a for-
mulation must be used that does not use the classical GO fields. In this way, all
the reflection and diffraction points can be accounted for by the uniform asymp-

totic expansion. The Physical Optics (PO) integral is typically used for this part of




the formulation. Once the evaluation of the PO integral has been performed either
numerically or asymptotically, the contribution from the edge must be corrected.

One method of correcting for the incorrect edge contribution is to use the Physical
Theory of Diffraction (PTD). The PTD consists of the PO contribution plus a fringe
equivalent current contribution that flows along the edge of the wedge. This fringe
current is obtained by asymptotically integrating the difference between the exact
diffracted surface currents and the PO diffracted surface currents up to the edge of the
wedge. A fringe equivalent current has been formulated by Michaeli [13] and Butorin,
Martynov and Ufimtsev [14] which is valid for far-zone incidence and observation
locations. These two solutions are commonly known to be identical.

More recently, the Incremental Theory of Diffraction (ITD) is formulated by
Tiberio, Maci and Toccafondi [15, 16, 17]. The ITD consists of three integral contri-
butions. The first of these integrals is the PO surface integral. The remaining two
integrals are line integrals along the edge of the wedge. These line integrals are used
to correct for the incorrect edge information of the PO integral. The exact diffracted
field and the PO diffracted field are localized using a Fourier transform pair. In doing
so, they obtain incremental diffracted field expressions that are valid in the near-zone.

Both the PTD and the ITD methods allow for a more complete formulation of
radiation and scattering problems than the classical equivalent current formulations.
However, to obtain a ray optical solution to a problem, the PO integral must be
asymptotically evaluated. If this can not be accomplished, some approximations
must be made in order to obtain a useful engineering solution. One of the most
common of these approximations is to assume that the PO surface integral minus its
edge contribution is the GO field. For near-zone problems, only the ITD can be used
in this manner since the PTD fringe equivalent currents are derived for only far-zone
cases. This will result in a solution that is similar to that of Greer and Burnside
or Albertsen, Balling and Jensen. However, the heuristic modification made to the
far-zone equivalent currents are not the same as the results of the more rigorous ITD

formulation.




The ultimate goal of this report is to develop a useful and efficient solution that can
be used to solve more complicated electromagnetic radiation and scattering problems
dealing with the diffraction by curved edges. Curved edges cause caustics in the
classical UTD ray optical solutions. The work presented in this report is devoted
to the development of a caustic corrected UTD solution. This means that uniform
asymptotic techniques are used to obtain a solution in the form of the classical UTD
except that the information about the caustics is included. One of the requirements
for a solution to be uniform is that it must reduce to the classical UTD result away
from the caustics. The solution must also be bounded near the caustic and reduce
to the known result at the caustic. This is accomplished here. Finally, the resulting
solution is a very fast and efficient way of computing the high frequency field diffracted
by a curved edge due to its ray optical nature.

This solution begins in a way that is very similar to that of Greer and Burnside
or Albertsen, Balling and Jensen. A diffraction integral is formulated using the In-
cremental Theory of Diffraction (ITD) recently developed by Tiberio and Maci [15,
16, 17]. These integrals turn out to be very similar to those obtained using near-zone
equivalent currents. Next, these integrals are asymptotically reduced on the lit and
shadow sides of the caustic. A uniform asymptotic expansion similar to the one devel-
oped by Chester, Friedman and Ursell [18] is used to obtain a caustic corrected UTD
solution on the lit side of the caustic. A uniform asymptotic expansion using classical
stationary phase techniques is used to obtain a caustic corrected UTD solution on
the shadow side of the caustic.

The caustic corrected UTD solution obtained in this report is consistent with
the classical UTD. The CC-UTD solution smoothly reduces to the classical UTD
solution of Kouyoumjian and Pathak on both sides of the caustic. Caustic correction
transition functions are multiplied by the classical UTD solution which allow the
coalescing diffraction points to properly combine and produce the correct field near
the caustic. Only one diffraction point remains on the shadow side of the caustic;
however, the ray field expression includes several different parts to obtain a uniform

result. The first part of this diffracted field expression consists of the classical UTD




field expression multiplied by a caustic correction transition function. The remaining
parts of this diffracted field expression are curvature dependent expressions that are
not obtainable using classical UTD techniques. These expressions are cast in the
form of the UTD diffracted field expression multiplied by caustic correction transition
functions and new curvature dependent diffraction coefficients.

Chapter 2 of this report is a brief review of the classical UTD. The diffracted
field caustics and the problems they cause are also discussed. Next, Chapter 3 is a
derivation of many of the common incremental diffracted field and equivalent current
expressions. These expressions are derived using a consistent procedure that allows
for the derivation of incremental diffracted fields consistent with the Physical Theory
of Diffraction and the Geometrical Theory of Diffraction. These different expressions
are compared to determine which expression is the best one for the problem to be
solved here. The formulation chosen is that of the ITD. In Chapter 4, the ITD is
discussed and the diffracted field contribution is derived by determining the field
diffracted by a wedge and the Fourier transform used to convert it to the incremental
diffracted field expression. This result is then asymptotically reduced to obtain a
closed form expression that is easy to use.

The field radiated by a source located on a flat plate with a curved edge is derived
in Chapter 5. The ITD diffracted field integral equation is formulated and asymptot-
ically reduced on the lit and shadow sides of the caustic. Two geometries are studied
in Chapter 6 using this solution. First, the radiation by a monopole mounted on a
flat plate with an edge defined by a parabolic equation is found. This geometry is
useful in isolating just the phenomena of interest because it is semi-infinite in extent.
It is also a simple geometry that gives valuable insight into the physical nature of
the solution. The CC-UTD is compared with the classical UTD for this geometry.
Next, the field radiated by a monopole mounted in the center of an elliptic disk is
determined. This geometry is used to show the applicability of this solution. The
CC-UTD solution is compared to the classical UTD solution and a Moment Method

(MM) solution for this geometry.




Chapter 7 is devoted to the derivation of the more general scattering solution.
The ITD diffracted field expression is derived and then asymptotically reduced on
the lit and shadow sides of the caustic to obtain closed form ray optical expressions
consistent with the classical UTD. In Chapter 8, the field scattered by a flat plate
with an edge defined by a parabolic equation and the field scattered by an elliptic
disk are determined. Again, the plate with the parabolic edge is used to illustrate the
physical nature of the solution and the elliptic disk is used to illustrate the practical
use of the resulting CC-UTD solution. The CC-UTD solution for the plate with the
parabolic edge is compared to the classical UTD solution. The CC-UTD solution is
compared with the classical UTD solution and a MM solution for the scattering by
the elliptic disk. Finally, Chapter 9 is a summary of the work in this report along
with some concluding remarks.

This report also includes several appendices. First, Appendix A is the closed form
evaluation of three auxiliary integrals used in the determination of the incremental
diffracted field expressions of Chapter 3. Appendix B is a derivation of the uniform
asymptotic expansions used to determine the diffracted fields on the lit and shadow
sides of the caustic. This appendix also proves that the two different expansions are
indeed uniform. Next, Appendix C contains useful formulas for the calculation of
the Parabolic Cylinder functions used in the caustic correction transition functions.
Finally, Appendix D is a derivation of the phase function, diffraction parameter and
half-plane diffraction coefficient derivatives used in the uniform asymptotic expan-
sions.

All of the fields in this work are time harmonic with an assumed time dependance
of /!, This time dependance will be suppressed throughout this report. It will also
be assumed that the free space wavenumber, k, has a small negative imaginary part.
This will ensure that the radiation condition is satisfied at infinity. In addition, the

plates are assumed to perfectly conducting.




SECTION 2

The Classical Uniform
Geometrical Theory of Diffraction

Many geometries considered in high frequency problems can be evaluated using clas-
sical diffraction techniques. An important class of these techniques uses the Geomet-
rical Optics (GO) fields along with diffracted fields to correct them. One of the most
commonly used diffraction theories is the Geometrical Theory of Diffraction (GTD)
and its uniform version the Uniform Geometrical Theory of Diffraction (UTD). This
chapter is a brief overview of the UTD.

The GTD was developed in great detail by Keller [19] and is a ray optical technique
that separates the total field into the sum of various types of fields each propagating
according to its own specific set of rules. For a perfectly conducting wedge, the three
types of fields used to determine the total field are the incident field, the reflected
field, and the edge diffracted field. The incident and reflected fields are the same as
those typically found using GO techniques. The diffracted field derived by Keller [19]
is valid in the far-zone but does not correctly compensate for the discontinuities of
the GO fields in the near-zone. Along the incident and reflection shadow boundaries,
the GTD diffracted field is singular.

The UTD derived by Kouyoumjian and Pathak [1] corrects for the singularities
of the diffracted field along the incident and reflection shadow boundaries which the
GTD does not. Their solution is in the form of the general diffracted ray of the GTD

except uniform diffraction coefficients are used. The general solution to a problem




has the form

EY(P) = E(P) + E"(P) + EX(P) (1)

where E*(P) is the incident field at the observation point P and E"(P) is the reflected
field at P. These are the GO fields. There are also diffracted fields of the form

3 = F .D _PHQ) e—iks
Ed(P) =E (Qe) D(Qe) \] 8 [pd(Qe) + 3] (2)

where 3(Qe) is a dyadic diffraction coefficient given by
D(Q.) = —B'BD.(Q.) — %P Du(Qe) (3)

and Ei(Q.) is the incident field at the point of diffraction Q.. The geometry for these
diffracted rays is shown in Figure 1. This solution is also in the standard ray fixed

coordinate system where the polarization vectors

- §xe §xE

= = 4
v |sxg sinf (42)
~, exs exs’

= = 4b
4 |ex 38| sinp’ (4b)
B = sx7% (4c)
B = &' x9’ (44)

form a spherical coordinate system about the diffraction point Q.. The rays diffracted
by the edge will propagate along lines which minimize the distance from the source to
the edge and to the observation point according to the generalized Fermat’s principle.
The diffraction point can be shown to be located where 8 = f'. It is also clear that
this distance is minimum for any point on the cone with a half angle of 8. This is
known as the diffraction cone or the Keller cone and it is shown in Figure 2.

The UTD diffraction coefficients D,(Q.) and Dx(Q.) corresponding to the soft

and hard polarizations are,

—e~iv/4 x4+ ¥ ; B
Da,h(Qe) = m Hcot( on )F [kL a.'*'(\I’ )]

+ cot (" ;n‘p_) F [kL‘a“(\Il‘)]}

9




(2)

(b)

Figure 1: Canonical geometry for the diffraction by a wedge: (a) oblique incidence
and (b) top view.
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Figure 2: Diffraction cone for an obliquely incident wave.
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¥ {cot (” “;:'+) F [kLa* ()]
+ cot (” ;:”) F [kL™a™ ()| }} (5)

where ¥F = 1) I 9’. The Fresnel transition function in (5) is

oo

Flz] = 2_7\/56’"’/(3_-’."2:11' (6)
7

where
+ _
a*(v) = 2 cos® (—21-2—%—1)

and N¥ is the nearest integer satisfying

(7)

2ruN* — 4 = &7, (8)

This transition function is used to bound the diffracted field and correctly compensate
for the discontinuities of the GO fields. The distance parameters L, L™ and L™ have
been obtained for a general curved wedge by Kouyoumjian and Pathak [1]. For the
cases of interest in this work, the wedge is formed by two flat faces. In this case, the

distance parameters are

Liopo_pm_ _2(eet3)mpm . . 8 )
AGERDICER)
where p! is the radius of curvature of the incident wave in the edge fixed plane and
p. and pi are the two principle radii of curvature of the incident wave at the point of
diffraction. A special case of interest here is for a plane wave incident on the wedge.
For this case, the distance parameters become L' = L™ = L™ = ssin?f.

For the general case of a curved edge, the incident field is diffracted astigmati-
cally. This means the diffracted field wavefront has two different principle radii of
curvature. This is accounted for by an amplitude spreading factor in the diffracted
field expression. This amplitude spreading factor is defined as the square root term
in (2). The astigmatic tube of rays diffracted by a curved edge is shown graphically
in Figure 3. Since the diffracted field exists along the diffraction cones, the edge is
the first caustic of the diffracted field. The second caustic of the diffracted field is p?
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Figure 3: Astigmatic tube of rays diffracted by a wedge.
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and is given by
1,(6-9) 5
Pe pgsin® B

where p. is the radius of curvature of the incident wave in the edge fixed plane, 7,

(10)

is the unit vector normal to the edge and directed away from the center of curvature
and p, is the radius of curvature of the edge at the point of diffraction.

Although the UTD diffraction coefficients do correct the GO fields at the incident
and reflection shadow boundaries, they do not correct for any problems that may be
caused by the amplitude spreading factor. The observation point is in the near-zone
for the case of interest here. This means that it is possible for the observation point
to approach the second caustic of the diffracted field. When this occurs, the UTD
diffracted field expression becomes infinite. It also turns out that this happens at the
same time two or more diffraction points merge (coalesce).

In an attempt to correct for these caustic problems, various equivalent current
and incremental diffracted field expressions have been derived. Equivalent currents
are filament currents that are placed along the edge of the wedge. These equivalent
currents are then substituted into the radiation integral and integrated along the edge
to obtain the total diffracted field contribution. An incremental diffracted field is the
field diffracted by an infinitesimal length of the edge of a wedge. This incremental
diffracted field is then integrated along the edge to obtain the total diffracted field
contribution. These techniques will be used in this work to find the field near the
caustic of the diffracted field.
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SECTION 3

Incremental Diffracted Fields

There are two main approaches used to determine the field diffracted by an infinitesi-
mal length of the edge of a wedge. The first of these is based on the currents induced
on the faces of the canonical wedge geometry. This approach is consistent with the
Physical Theory of Diffraction (PTD). The second approach is based on the field
diffracted by the canonical wedge geometry. This method is consistent with the Ge-
ometrical Theory of Diffraction (GTD).

Many people have worked on the development of the field diffracted by an in-
finitesimal length of the edge of a wedge from the current point of view. Mitzner [20]
derived incremental length diffraction coefficients for arbitrary aspects of observa-
tion using the non-uniform current induced on the two faces of the wedge. Later,
Michaeli [21, 22] derived equivalent currents for arbitrary aspects of observation us-
ing the total current induced on the two faces of the wedge. It was then shown by
Knott [23] that the total current part of Mitzner’s solution is identical to Michaeli’s
solution. Both of these formulations suffer from singularities along certain aspects of
observation. Michaeli [13] rederived his equivalent currents using a different direction
of integration of the current along the faces of the wedge to eliminate these infinities.
He also used the non-uniform current and obtained a result with fewer singularities.
This result was also obtained by Butorin and Ufimtsev [24] for the scalar case and
by Butorin, Martynov and Ufimtsev [14] for the vector case. The equivalent cur-
rent formulation of Ando, Murasaki and Kinoshita [25] follows the same procedure

as Michaeli [13] except a different integration direction is chosen for the integration
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of the surface current. Shore and Yaghjian [26] derived expressions of a similar form
that are used to determine the scattering by cracks and struts of reflector antennas.

A different approach to the derivation of the field diffracted by an infinitesimal
length of the edge of a wedge begins with the actual diffracted field. Ryan and
Peters [4, 5] compared the asymptotic form of the diffracted field with the asymptotic
form of the field radiated by a line source. These expressions were equated and solved
for the equivalent currents. However, their result is only approximate away from
normal incidence. Knott and Senior [9] enforced reciprocity to heuristically modify
the Ryan and Peters solution to improve the method for oblique incidence. This
formulation has been used primarily for far-zone problems. Later, the concept of
stripping was used to improve the accuracy of these solutions. A separate field based
formulation is that of Arnold [27]. He assumes a double spectral integral formula and
compares its asymptotic result to that of the GTD. This is then used to solve for the
unknown argument of the integral. The most recent field based derivation is that of
Tiberio and Maci 15, 16, 17]. This method uses a Fourier transform pair to convert
the field diffracted by the canonical wedge geometry into the field diffracted by an
infinitesimal length of the edge.

These methods are all very different in formulation, but are all used to describe
the same physical phenomena. Therefore, there should be some consistent method
for formulating them all in the same basic manner. This chapter is devoted to the
development of a unified formulation of the field diffracted by an infinitesimal length
of the edge of a wedge. This is accomplished by deriving the PTD equivalent currents
from the current on the faces of the wedge. This is then transformed to obtain the

field based GTD equivalent currents. Finally, all of these solutions are compared.

1 Double Spectral Integral Formulation of the
Field Diffracted by an Infinitesimal Length of
the Edge of a Wedge

In the determination of an incremental diffracted field, it is typical to find the field

diffracted by an incremental length of an infinite two dimensional wedge. This is
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usually accomplished by integrating the exact surface currents of each face of the
wedge up to the edge. This is the procedure that will be used here except the result
will be put in a general form that will allow for an easy comparison between the
various formulations. This section is a derivation of the double spectral integral form
of the field diffracted by an infinitesimal length of the edge of a wedge.
The magnetic field scattered by an object is easily found [28, 29] as,
B*(R) = / VGo(R,R') x J,(R') ds’ (11)
s
where Go(R, R') is the scalar free space Green’s function and J,(R") is the induced
surface current. For the specific case of the field scattered by the O-face of a two

dimensional, perfect electrically conducting wedge as shown in Figure 4,

-o

ilz\g

f VGo(R,R') x Jo(R') da'ds = / dE(R), (12)

where the incremental magnetic field scattered by the 0-face of an infinitesimal length
of the edge is
di*(R) = d2' / VGo(B,R') x Jo(R') de’ (13)
]

and .Z‘,’(R" ) is the surface current on the 0-face of the wedge. The spectral domain

form of the scalar free space Green’s function is

- - "Jklﬁ'-ﬁll 1 Y . , ,
Go (R, R I) 2 ey // e-'J[kz(z'—I Ykz(z—2")+ky lyl] dk.dk, : (14)
7l'lR R’I 8T ky

where
k? — k2 — k? s if k2 > k2 + k?
k, = (15)

—j k2 + k2 -k R <K+ K
is to be used here. The gradient of the scalar free space Green’s function is define in

cartesian coordinates as

2 2 AaG R‘r‘é, AaG R.! R’ o -" R/
VGo(R,R') =12 O(B:c ) ty 0(3,1/ 2] e aGO(;fz %) (16)
where - -
0Go(R,R") _ —ilke(a-ayka (o= Vkylol) PRz s
Oz 87r2 /./ ko Tk ()

v
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Figure 4: Canonical geometry for the scattering by a wedge.
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8Go(E,R") ke tom sk (et dk,dk,
ioufunhd St Bk A £y k e ilkz(z=2" )4k (z—2 YRy lyl] 22702 (18
Oy 8r2 /./ ’ )
and ..
!
aGO(aIi’R) P // k —jlkz(z—2")+k: (z—2")+kylyl] dkkdk (19)
Y

with ¢, = sgn {y} = sgn {sin9}. Since the 0-face of the wedge lies in the x-z plane,
Jo(R') = 2J(R") + 2T(R). (20)

Substituting (16) through (20) into (13) and interchanging the order of the spectral
and spatial integrals,

4B (F) = Fker by £ 222 21
Yy
where
(ks ko3 ') = / Fke, ks R') ek ks g, (22)
h(ks, ko3 R') = k(2 — 2') + k(2 — 2) + By [y (23)
and

ke, ks B) = 5 [~jegkyJ2(B))] + 7 [ikeT2(R) = k2R
+ 2 [jeyk, J2(R)] (24)

Next, the surface current on the 0-face of the wedge must be found. Since the

0-face of the wedge lies in the y = 0 plane,
Jo(R') = #, x HY(R ')L’=0 (25)

where 7, = § is the unit normal vector to the 0-face of the wedge and HY(R') is the
total magnetic field. Therefore, we find that

TR = HYR)|_, = H(R)| o= (26)

and

TR = —HYR)|_, = ~H(R)| oz (27)
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are the x- and z-components of the 0-face surface current, respectively. The incident
wave is assumed to be planar for the remainder of this chapter; however, the procedure
used here can be applied to other incident wave types. The components of the surface
current are determined from the expressions for the exact fields in the presence of a
wedge. The z-components of the total electric field and the total magnetic field in
the presence of the wedge are [30],

E;(R) = Ej(0)e " «*#' [u(kpsin 8, ") — u(kpsin #', ¥+)] (28)
and
Hi(ﬁ) = H!(0)e 7k cos# [u(kp sin B, ¥~) + u(kpsin £, \I"*')] ; (29)
respectively, where ¥F =1 = 9 and the function u(X, ¥) is
w(X,8) = =423 (G) T m(X) cos (Z9) (30)
n n n

de. (31)

_ 1 ‘/‘sin(i)ejxcose

2rjn J cos(£) — cos(¥)

r

The contour of integration in (31) is shown in Figure 5. Substituting (29) into (26)
and using the fact that H;(0) = Hj(0)sin3’, we can find the x-component of the

surface current as
JA(R') = 2H},(0)e™% <8 sin gru(X, '), (32)

where X = kz'sinf’. Also, due to the cylindrical uniformity of the wedge, the
transverse components of the total magnetic field can be determined from the z-

components using [31]

ki

H{(R) = =5V BY(R) + -‘%2 x V.EL(R) (33)
IR Ik

which allows us to determine the p-component of the total magnetic field as

OH{(R) we OEY(R)

Py — 4 !
H;(R) = —jcotp 3X T, 0v (34)
Using (29) and the fact that H;(0) = H}(0)sin 3, we find that
aH:(ﬁ) _ : ~jkz' cos B! _: ’ au’(X7 ¢’)
e o 2Hp,(0)e sin 3 5% (35)
p=z
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Figure 6: Change of integration direction along the face of a wedge.

and using (28) and E%(0) = H},(0)2Z,sin 3,
aEﬁ(ﬁ) _ 1 ~jk2' cos B’ . ! au’(‘X7 1/),)
50 Lo = 2H,(0)e Z.sin B —op (36)

p=z'

Therefore, substituting (35) and (36) into (34) the z-component of the 0-face surface

current is given by

!
J;’(R") = 2jH;;,(0)e'jk" cos8' cos B ———au(;;’,¢)
B l@u(X,gb’)

X oy (37)

+ 2jH,(0)e ™ o

where again X = kz'sin f'.

The integration along a strip of infinitesimal width in the z’ direction will be
changed to an integration along an arbitrarily directed strip as shown in Figure 6 in
an attempt to make the final result as general as possible. The change of variables

z’ — o'siny (38)
2 — 2'+0'cosy (39)
dX
!
4
de’ — Fsn (40)
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is used to reorient the integration along the face of the wedge to be in an arbitrary
direction. Therefore, substituting (39) into (32) we obtain the x-component of the

surface current

J:(R‘I) — ZHE;/(O)e_jkz, cosﬂ’e—jX cot 4 cot 3 sin ﬂ'u(X, ¢')
= 2 [B' . ﬁ‘(z')] g~iX cotvoot gin Blu(X, ') (41)

and substituting (39) into (37) we obtain the z-component of the surface current
du(X, ')
0xX
. rri - 1 0u(X, ")
2 H,(0)e ~jkz' cos B’ ,~jX cotycot B’

= 2j [B’ . ﬁ"(z’)] g-iX cotycot Bl o sp' BU(;;'¢ )

g 1 0u(X, ')

X &y
This change of variables also results in the change X = ko’sin-ysin 8'. Using this
result and the change of variables of (38) and (39), (23) becomes

J:(é,) = 2jH;;/(0) —jkz'cosﬂ' _jXCOt‘YCOtﬂ' ﬁl

+ 2] [’(2;' . ﬁ-i(zl)] e—jX cot -y cot (42)

k.siny + k, cos~y
hz,z;'=kzz;,"’ ? :
(kz, k3 R) = gk, k23 2') X( Feinysn ) (43)
where
g(kzy k23 2') = ko + k(2 — 2') + Kylyl. (44)
Next, substituting (41) through (43) into (22) we get
I(ks k3 2') = { ( [B H‘(z')] €y ——cotﬂ U,
; k, 1
+2[d" B ey 2 5 smﬂ,U)
tf 7! 1 1' 1
( 2(8'-H (z)] = ot U, — 2 [ - Hi(2)] =
.5 =] kz
~5i[p- B 2 03
slos[A1. it ky —ig(kzkz52")
+Z {25 [ﬁ -H'(z )] e,,-l:Ul eI\ el (45)
where the auxiliary integrals are defined as
U = [u(X,9)e X, (46)
0
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(-]

.= QuX¥) inegx (47)

J 0X
and
_ wl@u(X,gb’) iX¢
Ua_O/X—éhﬁ' e Xedx (48)
with

_ kosiny + (k. — kcos8’) cos y
- k sin vy sin B’ |

¢ (49)

It is found in Appendix A that the closed form endpoint contributions (i.e., the
contribution from the edge) of the auxiliary integrals (46) through (48) are

1

Ul = jsina Gh(a)1 (50)
1
U; = —cota Gy(a) — - (51)
and
Us = Gy(a), (52)

respectively. The functions G¢,(a) are the spectral diffraction coefficients of the

0-face of the wedge

Goh(a) = :?——7% [cot (#) ¥ cot (1”—(29‘5—-@)] (53)

for the soft and hard polarizations and a = cos™' { where ( is given in (49). The
proper definition of the inverse cosine function is given in (594) and (595) of Ap-

pendix A. Lastly, the cartesian-to-spherical coordinate transformation

£ = 7sinBcost +PcosBcosy — Psiny (54)
§ = 7sinBsine + BcosBsinyp + ¢ cos (55)
z = 7cosfB—fBsinf (56)

is used in (45) to convert the answer into the standard spherical ray fixed coordinate

system. The resulting solution can now be written in the standard dyadic form

dHY(R) = H(2') - G°(2') d2' (57)
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where
3"‘( "y = §7_r2_ / K(k,, k,;z ) ~lkzz+kz(2—2")+kylyl] ﬂ‘_;_:ﬂ"’_z. (58)
The amplitude function of this double spectral integral is a dyadic of the form
R(karkii?) = ~B'F Kpi(herksi2') = §'F Kyn(ka, be3 2)
—B'B Kpp(key ks; 2') = $'B Kyp(ks, a3 2')
—B'} Kpry(keyks; 2') — %' Kirlkay kzi 2) (59)

where the terms in the dyadic are:

Kpio(kzyk232") = {2691;0 sin B cos 4 cot B cot @ — 2%—smﬁs1n1/)cotﬂ cot a

k sin B sin ¥ ky cosB| o
k sin o 26"k i a} h(e)

! - 3 3 t /
{2, k sin B cos % cot B 2_k_ sin Bsin 1 co ﬁ} (60a)
n k n
ko smﬂsm'qb k, sin B cos?
.ol — o (o]
Ki/”r(kxakzaz) = { 8111,3' 26yk sin B’ G (a) (60b)
Kpp(ksykz32") = { —cos,Bcos¢cotﬂ cota — 2%cosﬂsm¢'cotﬂ'cota
k cos Bsinvy k, sinB| .,
k sin a +2 % s } (@)
! !
+12¢, ky cosﬂcos¢cotﬁ _k_,_cosﬂsmrl:cotﬁ} (60c)
Vk n k n
n k; cosfBsiny cos Bsiny ky, cosBcosy | o
Kll"ﬂ(kr)kz,z) = {2 A sm,B’ 25!/ L Sill,B G( ) (60d)
Kpy(ks,k232') = {—2sy%sin¢cotﬁ'cota——2%—cos¢cotﬁ'cota

k. cosy
2k sin } A(@)

k, sinycot B’ k; cosycotf’
k; cosvy k, sin o
K¢:¢(kz,kz; z') = {2 —]'c— i ﬂ' + 2€y'kl sing’} G,(a) (60f)

This is a convenient form of the solution because it allows for an easy comparison

between the incremental diffracted field solutions consistent with the PTD and the
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GTD. It is also convenient because if we compare (58) with (14), we see that they
both have a very similar form. Therefore, (58) may be interpreted as a spherical
wave propagating outward from a point 2z’ on the z-axis. Each of these spherical
waves are weighted differently for each co-polarized and cross-polarized diffracted field
component. These weighting functions are related to the soft and hard diffraction
coeflicients as expected.

This result is similar to that of Arnold [27] except for a few key points. The result
obtained by Arnold is only a scalar formulation. Also, Arnold’s result is obtained us-
ing a different procedure which assumes that the integral along the edge is performed
first and then the spectral integrals. For this case, he concludes that the amplitude
function of this integral need only contain information along the Keller cone direc-
tions. This is true because once the integral along the edge is performed, the spectral
integrals have dominant contributions near the Keller cone directions. According to
the method of stationary phase, the spectral integrals can be approximated using only
the values of the integrand near the Keller cone directions. Therefore, the information
about the fields along the Keller cone directions can be continued to other directions
with little change in the resulting solution.

Although this formulation is mathematically precise, it is practical for only a few
specific problems. It is assumed that the integral along the edge can be done in
closed form. This can be done only for simple geometries. In order to encompass a
wider class of problems, it is desired to determine a closed form result for the spectral
integrals and leave only the integral along the edge. This can not be accomplished

using Arnold’s procedure.

2 Incremental Diffracted Fields Consistent with
the Physical Theory of Diffraction

The procedures used to determine PTD equivalent currents are used here to obtain the
field diffracted by an infinitesimal length of the edge of a wedge. This is accomplished
simply by asymptotically reducing (58) to obtain a closed form result. In this section,
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an asymptotic expression for the incremental diffracted field from the total surface
current is determined.

It should be noted that the PTD method uses the non-uniform current to correct
the Physical Optics (PO) current near an edge. This non-uniform current is usually
asymptotically integrated up to the edge of the wedge to obtain a fringe equivalent
current. The PO current subtracted from the total current is the non-uniform current.
The expressions derived in this section correspond to the total current component
of the fringe equivalent current written in diffracted field form. Also, (57) will be
evaluated assuming a far-zone observation point. In this way, simpler formulas are
obtained which makes the comparison with the incremental diffracted field that is
consistent with the GTD much easier.

The asymptotic expansion of (58) begins by determining the stationary phase
point of the double spectral integral. It is a straightforward and simple exer-
cise to show that the stationary phase point of (58) is located at (kr,,k.s) =
(ksin B cos, kcos B). It is also easy to show that k* > k2, + kZ, and therefore (15)
evaluated at the stationary phase point is

ky, = g,k sin Bsin . (61)

The asymptotic expansion of (58) using the double integral stationary phase method [32]

is

Y

Go 1 1% koot (e dk,dk,
G() = 55 // Ry by oo Shem el ekl 22

i - —K—_—(kzs, kzs; Z’)e_jq(kz.,kx';zl) (62)
47ky,1/|AB — H?|

where it is assumed that ?(k,,kz; 2') is a smooth and slowly varying function of k
and k, near the stationary phase point. This is valid for far-zone observations. The

phase o, of the asymptotic expansion is defined as

+1 ;ifAB>H?and A>0
c=4 -1 ;fAB>H?and A<0 (63)
—j ;if AB< H?
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where the functions A,B and H are

0%q(ky, k.;2') r

A= — >0, o
akg (kz kz)=(kzs,kz3) k Sln2 1/; ( )
B=- 0q(kss k3 2') _ r(sin® Bsin’ ¢ + cos? B) 5
) Ok; (Fzskz)=(kzs,kzs) B ksin?Bsin%y
and
azq(k:l:, kz; Z,) T COS ﬂ cos ¢

H=- 22\ 7% ) _ reosfcosy )

Ok Ok, | irmbpey ksinBsin?y’ (66)

respectively. Also, » is the radial distance between any point on the edge and the
observation point. Using (64) through (66) it is a simple task to show
L _k (67)
VIAB—H? T
and that AB > H? and A > 0 which, from (63), leads to the fact that o = +1.
Lastly, evaluating (60)

sina ?

Rikeukis) = 88 {222 )} - 3% {228 6300
33 {2 sin 3 (cos 9 cot B — cos a cot A) ()

sin a
: !
B 2smﬂcotﬂ} (68)
n
and (44)
q(kzsy k23 2') = kr (69)

at the stationary phase point, all the quantities in (62) are completely determined.
Therefore, the far-zone asymptotic expansion of (57) is

e~k
47r

dHY(R) ~ H(Z') - D(2) dz’ (70)

where

= oz fosing 7 [, 8mB o,
D(z) = -B'B {2 : (a)}— Y'Y {2sinﬁ, G,(a)}

sinoa h

_ 33 {2sinﬂ(cos¢cotﬁ—cosacotﬂ) °(a)

sin o

sinﬂcotﬁ’} (71)

n

-2
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and

o = cos-! {sinﬁcos'z/: 4 (cos B — cos ') cot 7} . (12)

sin 3’ sin 3’
Again, the proper definition of the inverse cosine function is defined in (594) and (595)
of Appendix A. It is now a simple task to compare this solution with other existing
equivalent current and incremental diffracted field solutions.

If the orientation of the integration strips along the face of the wedge is normal
to the edge (i.e., ¥ = %) we get the solutions of Mitzner [20] and Michaeli (21, 22].
Recalling the fact that Mitzner used the non-uniform current in his solution, the field
from the total current was shown by Knott [23] to be the same as that obtained by
Michaeli. As discussed by Michaeli, this solution predicts singular fields for certain
aspects of observation. To eliminate most of these singularities, the orientation of the
integration strips is changed.

By reorienting the integration along the face of the wedge to be along the direction
of the grazing diffracted ray (i.e., 7 = @) the solutions of Michaeli [13], Butorin and
Ufimtsev [24] and Butorin, Martynov and Ufimtsev [14] are obtained. The paper by
Butorin and Ufimtsev is a scalar version of the more general vector electromagnetic
solution of Butorin, Martynov and Ufimtsev. It is also commonly understood that
the solution of Butorin, Martynov and Ufimtsev is identical to that of Michaeli. In all
three of these solutions, the non-uniform current is used. However, if the solutions in
these papers were performed using the total surface current, we obtain the solution
found in this section with vy = ',

Another direction of integration of the strips along the face of the wedge is pro-
éosed by Ando, Murasaki and Kinoshita [25]. The direction they propose is the
projection onto the half-plane of the difference between the directions of observation
and the Keller cone. Although this choice of directions does produce an equivalent
current with no singularities, it has no physical meaning since the current flows in

the v = B’ direction.
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3 Incremental Diffracted Fields Consistent with
the Geometrical Theory of Diffraction

The important difference in the formulation of the incremental diffracted fields that
are consistent with the PTD and the GTD is the choice of the coordinate system for
the spectra. The PTD incremental diffracted field, as derived in Section 2, was found
using a cartesian spectral integration. On the other hand, the GTD incremental
diffracted field can be obtained by converting the cartesian spectral integration to a
spherical spectral integration. This section is devoted to the conversion of thé double
spectral integral in (58) from cartesian coordinates to spherical coordinates. This is
then asymptotically reduced to obtain a closed form result.

To obtain the proper variable substitution, we recall from (49) and (594) that
k;siny + (k, — kcos ') cos v

(=cosa = ksin 4 sin B’
_ k. n Cotwy
= ksinﬂ'+(kz—kcosﬂ)ksin,8" (73)
If this equation is used to define the coordinate transformation, we can choose
k; = ksin ' cos o (74)
and
k. =kcosf (75)

for our substitutions. This is easily recognized as two of the three variable changes
from cartesian coordinates to spherical coordinates. Using a standard spherical coor-

dinate transformation, we find
k, = ksinf'sina (76)

as the remaining variable change. It is important to understand that integrating
the spectra in cartesian coordinates is the same as integrating the projection of the

spherical spectra on the k,-k, plane. Therefore, the infinitesimal area of the projection
is [33]
dk.dk,
ky

=ksin ' dadf'. (77)
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This completes the required variable substitutions. However, to avoid confusion,
a dummy variable substitution of 3’ — ' will be used. Therefore, the change of

variables becomes

k, = ksin#'cosa (78a)

k, = ksinf'sina (78b)

k., = kcost' (78c)

dk;dk‘ = ksind dadf. (784)
y

Next, to obtain a convenient and standard result, the directions of integration of both

spectral integrals are reversed

= 1 ff= Tk mk. (22! dk.dk.
Go(7) = =r // K(k,, k,; 2" )e ik +kz(2-2")+hylyl) T' (79)

The contours of integration must now be properly mapped. The contour of in-
tegration in the § plane is simple to determine. The angle §' is real between 0 and
7 from the spherical coordinate transformation. The remainder of the contour is
mapped into the complex ¢’ plane from —joo — 0 and © — 7 + joo. This contour of
integration is shown in Figure 7.

The contour of integration in the o plane requires more care. The result in (57)
through (60) expresses the radiation from a narrow strip of current on the 0-face of
the wedge in free space. Therefore, this result no longer has any explicit information
about the 0-face. It is important to take this information into account when making
the transformation.

To attain the correct transformation, the condition that the field scattered by
each strip on the 0-face of the wedge must be invariant under reflection. Therefore,
the range of 9 and v’ must be restricted to be 0 < 1,9’ < = which makes ¢, = +1.
Once the transformation is made under this condition, the angles ¢ and 9’ can be
analytically continued for all possible angles.

Recall that the integration of the spectra in cartesian coordinates is the same as
the integration of the projection of the spherical spectra on the k,-k, plane. Also, the

spherical spectral integration is only performed over the upper hemisphere because
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Figure 8: Contour of integration in the a plane.

g, = +1. Therefore, the angle a is real between 0 and 7. Again, the remainder of
the contour is mapped into the complex o plane from —joo — 0 and 7 — 7+ joo. It
is also important to remember that this is an incremental diffracted field and so the
contour of integration must be properly indented such that none of the Geometrical
Optics (GO) poles are crossed by a deformation of the contour of integration to its
steepest descent path. The contour of integration depends on the location of both the
GO poles and the saddle point; however, an example of this contour of integration is
shown in Figure 8.

Using the change of variables of (78) in (79), the resulting solution can be written

in the standard dyadic form
G°() = -—k— / / K, (0, a;2')e %9 ) 6in §' dox dO’ (80)

8n2j

cgl cu

[J1]
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and

g(8'y0;2") = cos 6’ cos B + cos(a ~ %) sin 8’ sin B (81)
where 0 < 1,9’ < 7 and the contours of integration Cy and C, are shown in Figures 7
and 8, respectively. From (60), the amplitude function of this double spectral integral
~ is a dyadic of the form

?,(0',&; Z) = —B'FKg(0,0;2") — $'F Ky (0,05 2)
—B'B Kpip(0',0;2") = §'B Kyrp(0', 5 2")
—B'P Koy(8',0;2') — ' Ky (8,05 2') (82)

where the terms in the dyadic are:

K (0',0;2') = 2{sinBcos b cos(a — 1) — cosBsinb'} Gi(a)

+ {2 s—m—%“-‘f-”— sin(a — ¢)} (83a)
Kyr(0',052") = —2sinfsin(a —9)G3(a) (83b)
Kpp(0,0;2") = 2{cosBcost cos(c — 1) + sin Bsin 8} G3(ar)

+ {2 fﬁ‘?s—el sin(a — ¢)} (83c)
Kyp(0',0;2") = —2cosfsin(a— ) Gy(e) (83d)

Kpy(0',a;2") = 2cosb'sin(a —9¥)Gr(a)
+ {—-2 co;ﬂ cos(a — ¢)} (83e)
Kyy(0,052) = 2cos(a—1)G3(a) (83f)

The angle 7 can not be analytically continued since the saddle point in the a plane
is located at a, = 9. The saddle point would move outside the range of integration if
this result was analytically continued. Therefore, a second change of variables should
be made to shift the saddle point location in the a plane to a constant.

To transform this integral to an integral with a typical diffraction integral con-
tour, let us assume the medium is slightly lossy so that k possesses a small negative
imaginary part. The contour of integration in the a plane can now be deformed from

C, to T, as shown in Figure 8. Next, we use the change of variables

a—-Yp=1-¢ (84)
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Figure 9: Contour of integration in the { plane.

and

do = —d¢ (85)

which maps the contour of integration I', to the negative of the contour C¢ shown in
Figure 9. Finally, changing the direction of integration in the ¢ plane, the solution

can now be written in the standard dyadic form

dHY(R) = B'(2')-Go(2') d2' (86)

where

—_— k — . 7 ‘5
of ') — r e, I\ —Jkrg(68',&:2") 2 ! ’
()= 53 / / K, (0,62 )e sin 0/ d¢ do (87)
Cor C¢
and

g(8',&;2") = cos 0 cos B — cos € sin 8’ sin B (88)




with the contour of integration in the £ plane being shown in Figure 9. The amplitude

function of this double spectral integral is a dyadic of the form

?,(0', &2) =

—B’F Kﬂ’r(ala £; z') - {5'? K¢rr(8’, f; z’)
~B'B Kpip(6',£;2') — $'B Kyo(8,&;2)
—B'Y Kpu(8,6:2') — % Kyy(8,6;2")

where the terms in the dyadic are:

Kg(8,¢;2')

K¢'r(‘9”£; z,)
Kpip(0',¢;2')

Kdz'ﬁ(e’a & z')

Kpgy(0',6;2') =

Kyy(0',¢;2)

—2{sin B cos§' cos ¢ + cos Bsin§'} é}’,(f)
4 {2 sin ,B:os ¢’ sin f}

—2sin Bsin € G°(¢)

—2{cos B cos ' cos ¢ — sin Bsin 8’} éﬁ(f)
N {2 cos ,Bncos ¢ sin f}

—2cos Bsin ¢ é"({")
2cos 8'sin ¢ G2(¢) + 2
~2 cos £ G3(¢)

cos §'

cos§

and the new spectral diffraction coefficients are
s - 32 [t (90 e (2 13200)

for the soft and hard polarizations. Since the saddle point in the ¢ plane is located at

(89)

(902)

(90b)

- (90c)

(90d)
(90e)
(90f)

(91)

¢, = 7, the angles 1 and 3’ can now be analytically continued for angles greater than

. An important note at this point is that the new spectral diffraction coefficients

in (91) for the 0-face of the wedge are identical to those found by Michaeli [34].

In order to compare this solution to the solution found in Section 2 it is convenient

to convert the integral in (87) to a double stationary phase integral. To accomplish

this, we again assume the medium is slightly lossy so that k possesses a small negative

imaginary part so that the contour of integration in the ' plane can be deformed from

Ce to T'g as shown in Figure 7. Finally, changing the variables of integration

¢ — B+36

36
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§E - w4+ (93)
df’'d¢ — —dédv (94)

in (87) results in the double stationary phase integral

o0

— —k = . . -
of o) = : . I\ p—ikrg(B+ibimtiviz’) oo ;
Go() = s,rzj_[.[ RKo(B +36,7+iv; e sin(8+j6)dsdv  (95)
where
— jkrg(B + 36,7 + jv;2') = —krh(8,v; 2) + jhr f(6,v; 2'), (96)
h(8,v;2') = sin Bcos Bsinh § (1 — coshv) (97)
and
f(6,v;2') = — cos® B cosh § — sin® B cosh v cosh 8. (98)

It is a simple task to show that the stationary phase point is located at (6,,7,) = (0,0).

As was done in Section 2, the high frequency expression of (95) will be found
assuming a far-zone observation point. Therefore, using the double integral stationary
phase method [32]

== ~osinf8

Go(2') ~ K, (B,m; 2')eFFrolbma) 99
) 4wry/|AB — H?| ( ) (%)

where it is assumed that ?,(ﬁ+ 36,m+jv; 2') is a smooth and slowly varying function
of § and v near the stationary phase point. This is valid for far-zone observations.

Also, o is defined in (63) and the functions A,B and H are

0% f(6,v; 2 ,

A= ——(6—5?——) = (0,0;2') = -1 < 0, (100)

(5’”)=(O!0)

2 6 . ol
g 2iw) = —sin?f (101)
ov? (6,)=(0,0)
and

2 6’ o« ol

H= _B_f_a(g%/ﬁ =0, (102)
Vo (w)=(0,0)

respectively. Using (100) through (102) it is a simple task to show that

1 1
|AB — H?| sinf

(103)
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and that AB > H? and 4 < 0 which, from (63), leads to the fact that o = —1.
Lastly, evaluating (90)

K.(Bym;2) = ~B'B {2G3(m)} - 9" {2G3(r)} - B'F {—2 cos B } (104)

n

and (88)

g(Bmi)=1 (105)
at the stationary phase point, all the quantities in (99) are completely determined.
Therefore, the far-zone asymptotic expansion of (86) is

e kr

dl
d7r g

dHY(R) ~ Hi(z) - D(2) (106)

where

n

D(z) = ~B'B {2G3(m)} ~ 44 {2G2(x)} - B'¥ {—2 el } . (o

To allow for an easy comparison between this solution and the solution found in
Section 2, we recognize that

Gon(T) = Gop(9) (108)

where G, (a) are the diffraction coefficients defined in (53) that were used in Sec-

tion 2. Therefore, (107) can be written as
D) = -5 26w} - 9% e -89 {222 o)

where this is now in a form that allows for an easy comparison with the results in

Section 2.

This result is very similar to the GTD equivalent currents that are derived from
a field point of view. The equivalent currents of Ryan and Peters [4, 5] were derived
for the case where § = ' = . These equivalent currents were then heuristically
generalized for oblique incidence by Knott and Senior [9] by enforcing reciprocity.
Rewriting this result in the form of an incremental diffracted field we obtain the
same expression as that in (106). Also, since it can be shown that the double spectral
integral representation of (86) is identical to the one obtained by Tiberio and Maci [15,
16, 17], the asymptotic expression in (106) is also. Therefore, the derivation of Tiberio

and Maci is a rigorous derivation of the Ryan and Peters result with the heuristic

modifications of Knott and Senior.
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4 Comparison of Incremental Diffracted Field
Solutions

Since the PTD and GTD incremental diffracted fields are all derived from the same
point of view, we are now in a position to compare the results of each of the different
formulations. This section is a comparison of the PTD and the GTD incremental
diffracted fields. The advantages and disadvantages of each is also discussed.

The double spectral integral forms in cartesian and spherical coordinates produce
the same results in this form. Therefore, if we follow the procedure proposed by
Arnold [27] and the integral along the edge is performed first, both spectra will
produce the same result. However, as discussed earlier, it is rare to work a problem
in which the integral along the edge can be done in closed form. This means that
Arnold’s procedure is not very practical. The most practical incremental diffracted
field solution is obtained by asymptotically reducing the spectral integrals.

The only difference between the various PTD solutions is the direction taken
for the integral of the current along the faces of the wedge. The most physically
meaningful direction for this integration is that of the grazing diffracted ray as pointed
out by Michaeli [13] and Butorin, Martynov and Ufimtsev [14]. This produces a result
that predicts fields off the Keller cone. It is yet to be shown what the significance of
using this type of formulation has in the near-zone.

The GTD incremental diffracted field can be obtained from the PTD incremental
diffracted field by restricting the observation point to lie on the Keller cone. It is
then reasoned that according to the method of stationary phase the integral along
the edge is dominated by the contribution near the Keller cone direction. Therefore,
the information about the fields along the Keller cone directions can be continued
to other directions with little change in the resulting solution. The main advantage
of this type of formulation is that a near-zone incremental diffracted field can be
obtained. For this reason, the incremental diffracted field formulation of Tiberio
and Maci [15, 16, 17] will be used for the remainder of this work. A more detailed
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derivation of the near-zone diffracted field contribution of the ITD is performed in

the next chapter.
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SECTION 4

The Diffracted Field Contribution
of the Incremental Theory of
Diffraction

The derivation of the diffracted field contribution of the Incremental Theory of Diffrac-
tion (ITD) consists of several steps. First, the exact expression for the field diffracted
by the canonical wedge problem is determined. Next, a Fourier transform pair rela-
tion is derived. This is then used to find the field diffracted by an infinitesimal length
of the edge of the wedge. Finally, this expression is asymptotically reduced to obtain
a closed form expression that permits its easy application to more general geometries.
This is the procedure developed by Tiberio and Maci [15, 16, 17]. This chapter is
a more complete discussion of the ITD as opposed to Chapter 3 which is a deriva-
tion of the diffracted field contribution of the ITD. The diffracted field contribution
formulated in this chapter is obtained using the procedure proposed by Tiberio and
Maci [15, 16, 17] and not from the current as was done in Chapter 3. This chapter is
devoted to the discussion of the ITD method and the development of the near-zone
diffracted field contribution of the ITD.

1 The Incremental Theory of Diffraction

The ITD is a recently proposed method for determining electromagnetic fields. The
ITD consists of three separate field terms as formulated by Tiberio and Maci [15, 16,
17). This section is devoted to a discussion of the ITD.
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The ITD consists of one surface integral contribution and two line integral contri-
butions. The surface integral is the integral of the field radiated by an infinitesimal
patch of the surface. This surface integral is taken to be the Physical Optics (PO) in-
tegral. To compensate for the incorrect edge contribution of the PO integral, the PO
edge contribution is subtracted out and a more accurate diffracted field contribution
is added. These are the two line integrals.

Tiberio and Maci propose the use of a Fourier transform pair to obtain the con-
tributions from an infinitesimal length of the edge. This consists simply of Fourier
transforming the solution for the infinite wedge case. This results in incremental con-
tributions that can be written in terms of incremental diffracted fields corresponding
to the PO diffraction and the exact diffraction by the wedge.

Although all three of these contributions are required for a complete ITD solution,
very good results can be obtained by only including the diffracted field contribution
and the classical Geometrical Optics (GO) fields. Since the PO integral without its
edge contribution is essentially the GO fields, the PO and PO edge contributions
can be determined approximately using the classical GO theory. Although these
contributions are not identical, the difference is small for most cases. For this reason,
the field calculations for the remainder of this work will consist of the GO fields being
generated using classical GO techniques and the diffracted field being generated by
the incremental diffracted field contribution of the ITD.

2 The Canonical Wedge Solution

The derivation of the diffracted field contribution of the ITD begins with the exact
solution for the field diffracted by an infinite straight edge of a wedge with two flat
faces. This geometry is shown in Figure 10. This section is a brief derivation of
the exact diffracted field in vector form. This solution is written in a form that is
convenient for the remainder of the ITD diffracted field solution.

An important and useful fact about the total field exterior to a cylindrically sym-
metric geometry with a plane wave incident is that the transverse field components

can be completely determined from the axial field component. For the geometry of
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Figure 10: Geometry for the canonical wedge.
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Figure 11: Contour of integration for the canonical wedge geometry.

interest here, this means that the total field in the transverse directions can be deter-
mined from the z-components of the electric and magnetic fields. The z-components

of the electric and magnetic fields were derived by Pathak and Kouyoumjian [31] and

are )
| emiki .
— ikepcost
E.(P)= ~F} = [ au(g)eoee at (110)
-
and
. e'jkiz’ .
H(P)=~H} =~ /G,,(g)dkmmf de, (111)
L-1'

respectively; where k! = kcos’ and k; = ksinfB’. Also, the spectral diffraction

coefficients are

Gonl€) = %7-11— {cot (f ;:'_) T cot (f ;:”L)} (112)

where ¥F = 1) F 1’. The contour of integration for the field expressions in (110)
and (111) is shown in Figure 11. The total electric field exterior to the wedge can
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now be written as

Eo(P) = E,(P) + 2E.(P) (113)
where E,(P) are the transverse field components of the total electric field. This is
shown by Pathak and Kouyoumjian [31] to be related to the z-components of the

electric and magnetic field

K
E(P) = o VE(P) + k;‘s x V.H,(P) (114)
where
8 ;108

It is a simple task to show that the derivatives w1th respect to p of the z-components

of the electric and magnetic fields are

0 % —Jk' tkepcosé
2 E.(P) = -E X5 e, weost | g¢
Op
— i ik Tt jkepcosé
= —E e o / cos§ G,(€) e dé (116)
L-L'
and
a i —Jk i jkepcos §
S H(P) = ~E Gh(E){ 356 | a6
P L-1'
i —1 :‘zl k ike p cos
= —H] e éﬁ [ cosé Ga(g) eeeere dg, (117)

L-L'
respectively. The derivatives with respect to 3 of the z-components of the electric

and magnetic fields require more care. The differentiation process begins with

1 6 e—jkiz' 0 jktpcos
5y EAP) = ~E: e /{ 35 G (e)}ek € de. (118)
Next, we recognize that
0 0
'51; G,(€) = 'a'EGa(f) (119)
which makes (118)
1 6 e""‘i" 0 kepcos €
S5y B(P) = ~EL 5 / { 5 - (e)}ei de. (120)




This integral is now in a form that can be easily evaluated using integration-by-parts.

Using integration-by-parts
d:z:—u'v—/v——-d:c (121)

and noting that the values of the integral at its endpoints is zero, (120) becomes

1 6 2 E (P) — E,‘ e—jk.iz / ,(f){ e,k,pcosi} df

p Oy * 2mjp
L-L
= —E e‘i"?’% sin £ G,(¢) e?FtPeost d¢ (122)
L-L'

which is the derivative of the z-component of the electric field with respect to ¥ as

desired. The derivative of the z-component of the magnetic field with respect to % is

10 .
p oY

following a similar procedure. Noting that E' = Ejsinf', H, P ZLC E:;,, sin B’ and

H,(P)= —Hie " ’- / sin G (£)e™Peost g (123)

L—L'

using the coordinate transformation
p=7sinB+ Bcosp (124)

Z=7FcosfB—fBsinf, (125)

the resulting solution will be in the standard ray fixed coordinate system. Substi-
tuting (114), (116), (117), (122), (123) into (113) and simplifying, we obtain an
expression for the total electric field given by,

Ex(P)= E(Q) 5= / Foo(g, B)e 1€ dg (126)
where |
f(€,8') = cosBcos B — cos £ sin Bsin B'. (127)

Also, the dyadic _F—“m(f ,B') is given by
Fulé,B) = —B'7Fpul,B8) Gi(€) — B 'FFyn(£,B') Gu(€)
~B'B Fap(¢,B) a(E) —%'B Fys(¢,B") Gu(£)
—B'% Fory(€,8) Gal€) — %% Fuy(£,8) Gu(§)  (128)
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and the terms in the dyadic are:

Fao(t,B) = sinfcos B cost + cos fsin (1292)
Fyr(¢,8) = —sinPsing (129b)
Fpp(¢,B") = cosBcosf3 cos§ — sin Bsin (129¢)
Fyp(€,B') = —cosPsin{ (1294)
Fgy(€,8) = cosf'sing (129)
Fyy(€,8") = cosé (129f)

To obtain only the diffracted field contribution of the total field, we begin by
closing the contour of integration. This is accomplished by including the steepest
descent paths through the points { = +7 as shown in Figure 11. Now, if we define
the contours C = L — L' + Ty + 5, and Ty = Ty 4+ I',, the total electric field is

Bu(P) = B(Q) 5 f FulbB)e et

1

_ E’(Q’) i -é?J_ /?w(e,ﬁl)e—jkrf(&ﬁ')dg. (130)

It is shown by Pathak and Kouyoumjian [31] that the integral on the contour C
produces the GO fields and the integral on the contour I'y produces the diffracted
field. Finally, the field diffracted by a wedge with a plane wave incidence is

F —-_Fwoy. L [F Ne—ikr(€.8")
E4(P)=-F(Q) 5 / Foo(t, 8)e 18 dg (131)
where f(£,8') and ?oo(f ,B') are given by (127) and (128), respectively.

3 The Fourier Transform

The next step in the development of the ITD diffracted field expression is the deriva-
tion of a specialized Fourier transform pair. This is used to obtain an incremental
quantity from the infinite wedge solution of Section 2. This section is devoted to
the derivation of the Fourier transform pair used by Tiberio and Maci [15, 16, 17] to

obtain this incremental quantity.
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It is necessary at this point to make some assumptions about the desired form of
the resulting solution. It is assumed here that the diffracted field can be written in

the form,

B (P) = / Ji(")e ik cos8' gt (132)

where [ 9(2') is an incremental quantity yet to be found. This quantity is determined

by recalling the traditional Fourier transform pair:

Alz) = / B(a)e™**dar (133a)
B(a) = % f Alz)e?*dz (133b)

Next, comparing (132) and (133a), we obtain the change of variables

a = 2 (134a)
z = kcosf (134b)
B(a) = I%(2) (134c)
A(z) = E4(P) (134d)

that will allow us to use the Fourier transform pair in (133) to determine 1%(2’). Thus,
substituting (134) into (133b),

iy = -2‘-’“; [ BL(P)* 8 d(cos B) (135)

is the unknown incremental quantity. The variable of integration is changed to £’ to
put this result in a more convenient form. The dummy variable ¢’ is used to avoid

confusion. Finally, the desired Fourier transform pair is:

oo

Ei(P) = / I8(2")e 3% cos8' 4! (136a)
) = L3 / E2 (P)sin 8’ %' dg’ (136b)
2w e
-1

where the contour of integration in the 8’ plane is shown in Figure 12.
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4 Formulation of the Diffracted Field Contribu-
tion of the Incremental Theory of Diffraction

The next step of the ITD diffracted field formulation is simply to use the Fourier
transform pair developed in Section 3 to convert the solution of the infinite wedge of
Section 2 into the field diffracted by an infinitesimal length of the edge. This section
develops the final ITD diffracted field expression and converts it into a convenient
form for its use on more general problems.

Although (136) is a valid form for the ITD diffracted field, it is not the most

convenient. The Fourier transform pair in (136) can be written in the more convenient

form,
B(P)= [ aB¥(z) (137)
with
dEi(2') = dz'e'jkz'c“ﬁl—zk; / EZ3 (P)sin §'e*% «os¢' gg’ (138)
CG'

where dﬁd(z’ ) is the field diffracted by an infinitesimal length of the edge as desired.
Since this expression is for an infinitesimal length of the edge, the edge can be changed
to any general edge geometry. Thus, substituting (131) into (138) we obtain for any
general shaped edge,

E4(P) = / dE(1) (139)
Ce
where C, is the contour along the actual edge,
dE4(1) = —dl B (Q")- 4:2]_ / / Foolt,0)sin e~ 1€ ¢4 (140)
Cot Tg
and
f(€,6') = cos Bcos 8’ — cos € sin Bsin 6. (141)

Also, the dyadic Foo (¢, ') is given by
Fool(6,0) = —B'FFaul£,0) G,(¢) = D'FFur(€,0) Gal(€)
—B'B Fpp(€,0') Gu(¢) —%'B Fys(¢,6") Gl€)
—B"P Fary(£,6') Go(€) — b9 Fyry(€,8) Ga(€) (142)
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and the terms in the dyadic are:

Fp(€,6') = sinBcos b cosé + cosfBsin §' (1432)
Fy,(€,0') = —sinfBsiné (143b)
Fpp(€,8') = cosBcosb cosé —sinBsin ' (143c¢)
Fyp(€,6) = —cosfPsiné (143d)
Fa(£,6) = cosf'sing (143¢)
Fyy(€,6') = cosé (143f)

This concludes the derivation of the diffracted field contribution of the ITD. In order
to make this expression easy to apply, we wish to asymptotically reduce it to obtain

a closed form expression.

5 The Asymptotic Expansion of the Diffracted
Field Contribution of the Incremental Theory
of Diffraction

Although the ITD diffracted field expression in (140) is valid, it is useful for only a
small set of problems in this form. To apply this to a wider class of problems, we wish
to obtain a closed form expression that will leave only the integration along the edge.
This is accomplished here by asymptotically reducing (140) for high frequencies. This
section is a derivation of this closed form result.

We begin by asymptotically reducing the integral in the { plane. It is a simple
task to show that (140) has saddle points located at §, = = for the contour I'; and
¢, = —m for the contour I';. The dyadic ?w(f ,8') in (142) can be simplified if it is

assumed that (143) is smooth and slowly varying near the saddle points, this means

Fg,(¢,,6') = sin(8' - pB) (144a)
Fus(t0,8) = 0 (144b)
Fﬂ’ﬁ(gasal) = —COS(GI—IB) (144c)
Fys(tnt) = 0 (144)




Fpry(€ss6') = 0 (144e)
Fyy(t,,0) = —1. (144f)

Therefore, (140) is given approximately by

dEY (1) ~ dl E(Q') - Ek; / K oo(8) sin §e~ikr cosBeost’ g0 (145)
Ce/

where
Koo (0') = —B'Fsin(6' — B)W,(8') + B'Bcos(8' — BYW.(6') + %' Wa(8')  (146)
and

' -1 ykr sin 8 sin .'cos
Wenld) = 5 / G, 4 (£)e* sinBoind'cost g¢. (147)
T4

Next, if we substitute (112) into (147) and let k = krsin Bsin ' and R, = F1, (147)

becomes

™
+
S

Wen(8') = 1. /cot( o —) efncost ¢
+ —1.—/cot (6 + "
+ Rs’_h /cot(

R’»h f + LA jrcosé
+ == r[ cot( — )e dé. (148)

These integrals have been evaluated by Pathak and Kouyoumjian [31] assuming & > 1

ejncosf df

ej:c cosé df

by using the Pauli-Clemmow modified method of steepest descent which results in

—_— e—j1r/4 5 , e-—jkrsinﬁsinﬂ’ .
wl8) ~ = s,h(Q)m (149)
where

n_ 1 T+ U~ Frar =]
Dun(@) =5, {cot( o )F[kLa (%))
+ oot =27 F [kLa~(%")
co o kLa ( .
x4 ¥F LT ot ()
:F{cot( o )F kLa™(¥T)
o\ . .

+ cot (" L )F kLa=(¥F) }] (150)
2n L :
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and I = rsinBsin@’. The functions F[z] and a*(y) are defined in (6) and (7),
respectively. Thus, substituting (146) and (149) into (145) and simplifying, we obtain
the integral

dE4(1) ~ dl Bi(Q")- / Poo(6')e ik o8 ~B) g (151)

Cot

= s, e 3m4 [ ksin @ ~
(6) = — =€ s (ol _ (O
Pull) = B | sin(6' ~£) Du(@)

~, e 9™% [ ksin 6 AT (O
BB (8! - B) D)

o e [ ksing —~
Y 2 27rsin B Di(@) (152)

and D',,h(Q’) is given in (150).
Finally, the integral in the #' plane must be asymptotically reduced. First, the

where

contour of integration Cp is deformed to its steepest descent path Sy as shown in
Figure 12. Also, it is a simple task to show that the integral in (151) has one saddle
point located at 8, = B. The classical method of steepest descent can be used if we
assume that io(e' ) is a smooth and slowly varying function near the saddle point
6'. Therefore, we obtain a closed form asymptotic expression using the method of

steepest descent [32] and assuming kr > 1,
Bé(P) = / dE4(1) (153)
Ce

where C, is the contour along the actual edge and

e gkr

dB(1) ~ E'(Q") - {B'BD(Q) + P Du(Q)} 5— dI (154)

27r

is the diffracted field contribution of the ITD. In doing so, the distance parameter
becomes L = rsin? B. This is the same result obtained by Tiberio and Maci [15, 16,
17). For the remainder of this work, the geometries of interest will be restricted to

curved edges of flat plates. In this case, we can set n = 2 and simplify (150) to

FlkLa(¥~)) _F [kLa(‘I'+)]} (155)

Es,h(Q,) = ".])f{ cos (_\11_:_) + cos (.‘Ii)

2
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where
:F

a(T¥F) = 2 cos? (%—) . (156)
This result is now in a very simple form consisting of only the integral along the edge
of the wedge.
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SECTION 5

The Radiation by a Source on a
Flat Plate with a Curved Edge

A wide class of problems studied in electromagnetics is the radiation of a source on
a flat plate. Caustics of the UTD diffracted field will occur if the edge of the plate is
curved. The UTD fields must be corrected to account for the caustics to accurately
determine the field radiated by the source in those regions. A caustic corrected UTD
solution that can be used to determine the field diffracted by the curved edge of a

flat plate with a source located on it is derived in this chapter.

1 Problem Formulation

Two main topics must be addressed when formulating a caustic corrected UTD solu-
tion for determining the field near the caustics of waves diffracted by curved edges.
First, the canonical geometry must be chosen to be the simplest structure containing
the phenomena of interest. The method of solution must also be determined. This
section is a discussion of the canonical geometry and the method used to obtain a
solution for the radiation by a source on a flat plate with a curved edge.

The phenomena of interest here is the coalescence of three diffraction points.
Therefore, the canonical geometry to be used should contain no more than three
diffraction points. Although a disk is often used as a canonical geometry, it has
either two or four diffraction points depending on which region the observation point

is in. However, this geometry would unnecessarily complicate the solution because
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there is one more diffraction point than is needed for studying this phenomena. This

occurs because the disk is finite in extent. The simplest geometry that contains the
phenomena of interest is the curved edge of a semi-infinite flat plate. Once the CC-
UTD has been developed for this geometry, the solution can be applied to the disk
due to the high frequency localization property of electromagnetic fields.

It is also important to consider the mathematics involved with the geometry in
order to obtain a tractable solution. The scope of the solution is narrowed for the
purposes of this work. The procedure used to obtain a solution here can be used
to obtain a more general solution. However, to study the phenomena of interest, it
is assumed that the edge of the plate is symmetric, the source lies along the axis
of symmetry and the far-zone observation point is also in the plane of symmetry
of the edge of the plate. This georhetry is chosen so that the diffraction points are
symmetrically located and equally spaced. A procedure similar to the one developed
here can be used to obtain a solution if the diffraction points are not equally spaced.

The ITD developed by Tiberio and Maci [15, 16, 17] will be used in this work
to obtain a caustic corrected UTD solution. The ITD contains three different com-
ponents as discussed in Section 1 of Chapter 4. The first term is a Physical Optics
surface integral. This integral can be formulated by using the spectral domain form of
the scalar free space Green’s function, interchanging the spectral and spatial integrals
and performing the spatial integrals. This results in a double spectral integral form
of the PO integral. Upon doing so, it can be seen that the PO integral contains three
double integral stationary phase points and a branch point of order — 3. Although
it should be theoretically possible to obtain a uniform asymptotic expansion for this
type of integral, it is not possible using existing theories. Also, since the phase func-
tion would have to be mapped to a fourth order polynomial that is a function of two
variables, the canonical integral would have an extremely complicated form. In fact,
this integral would be no simpler to compute than the original PO integral. This
defeats the purpose of the asymptotic expansion. Therefore, we wish to make some

approximations in order to obtain simpler integrals.
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As discussed in Section 1 of Chapter 4, the PO surface integral minus its edge
contribution is approximately the Geometrical Optics field. This approximation is
valid as long as the reflection point is not near the edge when the diffraction points
coalesce. This is the same as saying that the caustic boundaries can not be close to the
incident or reflection shadow boundaries. This will be assumed here. Therefore, the
only remaining contribution of the ITD is the diffracted field component. The total
ITD field will be approximated by the GO field and the diffracted field contribution
of the ITD integrated along the edge of the plate. The diffracted field contribution
of the ITD is derived in Chapter 4.

Only one single integral appears in this solution. The resulting formulation is sim-
ple enough in form to allow for the uniform asymptotic expansion of the diffracted
field integral equation. The canonical integrals used in this expansion are standard
and well tabulated functions. This is an attractive feature of any asymptotic expan-

sion.

2 Diffraction Integral Formulation

An integral equation must be formulated that can be asymptotically expanded to
obtain a caustic corrected UTD solution. The ITD will be used in this work to obtain
this diffraction integral. This section is a derivation of the diffracted field integral
equation used to obtain a caustic corrected UTD solution.

Some assumptions must be made to obtain a usable diffracted field integral equa-
tion. First, as discussed in Section 1, the incident and reflection shadow boundaries
can not be close to the caustic boundaries caused by the curvature of the edge since
only the diffracted field contribution of the ITD is to be asymptotically expanded
here. Next, recalling that the ITD diffracted field in Chapter 4 was obtained by
asymptotically expanding a double spectral integral assuming that kr sin?8 > 1,
this must also be enforced here. Finally, it will be assumed that the curvature of the
edge is symmetric and the source location and the observation direction lie in this

plane of symmetry as discussed in Section 1. This geometry is shown in Figure 13.
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Figure 13: Canonical geometry for the diffraction by a curved edge.
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In order to use the ITD formulation, it is important to note that the ITD result
is reciprocal. Since the ITD was formulated for plane wave incidence and a near-zone

observation point, this can be assumed here and then reciprocity used to obtain the

radiated field. The ITD diffracted field as derived in Chapter 4 is

E4(P) = / dE4(1) (157)
where C. is the edge contour and
—Jkr
dE(1) ~ E'(Q) - {B'BD.(Q") +¥'$ Du(Q %5 (158)

is the electric field diffracted by an infinitesimal length of the edge of the wedge. The
half-plane diffraction coefficients given by

F|kLa(%® F [kLa(¥*
”"Q)”{ ios(éz:))]* c[os(i,;))]}

are to be used since only flat plates are being considered. Also, the angle parameter

(159)

a(¥TF) is given by
oF
a(\Iﬁ) = 2(‘,052 (-5—) (160)

where UF = ) ¥ 1/, the distance parameter is L = rsin’f and F[z] is the UTD
Fresnel transition function defined in (6).

We begin by noting that 3 = 0 for all the diffraction points on the edge since the
observation point is located on the plate. Therefore, % is a constant and 5,(Q’ )=0
for all the diffraction points on the edge. Using these facts, (157) reduces to

EY(P) = ¢-— / [E(0) - ¢]D"(Q) etk [-7"7e=r] g (161)
where E(0) = % E,_+ B Ej . Also, from (4b) of Chapter 2 we know
=
which makes (161)
B(P) = $Ei. / (5151} 249 i g
b Ey [rex sy Y AT la o
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Using a vector identity and noting that 3’ is orthogonal to %/ and 3/,

¥, [Ex3] = & [¢'xpl|=e-Bl=—2-5
B

B! .[exs] = 'e"[.'s"x

(164)
(165)

The contribution corresponding to (165) integrates to zero since it is an odd function

of arc length. It is now advantageous to change the variable of integration to be along

the x direction which converts (163) to,

EYP) = JE;, — o f

r sin ,B’

where the Jacobian of the transformation is

a _ -1

dz. €-Z

from (761) of Appendix D. Finally,

_ ~. 1 F .
E*(P) = $ B}, > / Flz.) e dg,

where
h(ze)=-8"-1.—7
and _
_ Dn(Q')
Flae) = rsin B

*‘* Dh(Q) Jk[ s rc—r] dl

(166)

(167)

(168)

(169)

(170)

This completes the derivation of the diffracted field integral equation. This integral

must now be asymptotically expanded to obtain closed form results for both the lit

and the shadow sides of the caustic.

3 The Uniform Asymptotic Expansion of the Diffracted

Field Integral Equation in the Caustic Lit Re-

gion

Although the diffracted field integral equation derived in Section 2 can be numerically

integrated to predict the field diffracted by a curved edge, it is advantageous to obtain
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Figure 14: Reciprocal ray geometry for the diffraction by a curved edge in the caustic
Lit region.

closed form expressions. One way to accomplish this is to asymptotically expand the
integral at high frequencies. This section is devoted to the asymptotic expansion of
the diffracted field integral equation for the lit side of the caustic.

In the caustic lit region, there are assumed to be three symmetrically located
diffraction points as shown in Figure 14. This ray structure occurs because of the
assumed symmetry of the edge, source location and radiation direction. A uniform
asymptotic expansion must be used when these diffraction points are nearly coinci-
dent. The uniform asymptotic expansion derived in Section 2 of Appendix B can be
utilized with these assumptions in mind.

First, m = 0 in (614) of Appendix B because the integrand of the integral in (168)
does not contain a zero at the central stationary phase point. Also, as explained
in Section 1 of Appendix B, if the integral has three real stationary phase points
then p = —n where p = sgn {h™(z.)} and 1 = sgn {h"(z.)}. Finally, it is assumed
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that k¥ > 1 and F(z.) is a smooth and slowly varying function of z. about the

central stationary phase point. From (657) of Appendix B the diffracted field integral

equation in (168) can be approximated as

2d _ am 1 F skh(ze)
E{P) = $Ej— / Flz.)eh=o) dg,

. F (;c) 2r

jnw/4_skh(zc)
1/) tl:c o kh“(zc) € e’ TC(E’O)
- ' f ch 27!' —a 7 N x
+ Y2E, (27r : kh"(zn) e Irlei "°)T,w(§,77,0) (171)

where the argument of the transition functions is

= |[V2k[A(z00) = hz0)]| e (172)

from (626) of Appendix B. It is easily shown using (753a) and (764a) of Appendix D
that the value of the phase function is

h(z;) = —s. (173)

at the central stationary phase point and using (7562) and (765a) of Appendix D that
the value of the phase function is

h(zpe) = —8' -7 Te(@nc) — (174)

at the non-central stationary phase points. The argument of the transition functions

becomes

= !\/2’9[—A' « Fo(Qne) — Sne + 8] | €773/ (175)

using these in (172). Also, from (753c) and (764c) of Appendix D the second derivative

of the phase function is
1 1
R (z.) = — [— + ————} 176
(zc) = T AQ) (176)
at the central stationary phase point and from (756¢) and (765c) of Appendix D the
second derivative of the phase function is

1 ] 1
Snc P (an) E 5
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at the non-central stationary phase points. Next, the value of 7 is

d
= sgn (h¥(ea)} = —sgn { s =} (178)

The last items required for the uniform asymptotic expansion are the amplitude

functions evaluated at the central

Flze) = ————D"E?C) (179)
and non-central _
_ Dh(an)
f(an) - sﬂC Sin ﬂnc (180)

stationary phase points. Finally, substituting (173), (174) and (176) through (180)
into (171) and simplifying, we obtain

.y N o .=L Pd(QC) e—jk-’c
EYP) ~ E'(Qc)-D (QC)J‘sc FICATEX

. — d( N+ '
+ P .#(QL) \ 8nc [p"p(22+n)6)+ Bnc) e

+ E'(Q;c) * —ﬁL(Q;c) \ Spe [pdp:(Q?.;)C)_}_ 3nc] e‘jk-’n; (181)

as the asymptotic form of the diffracted field on the lit side of the caustic. The caustic
distances p?(Q;}.) and p?(Q;.) are equal because of the symmetry of the geometry.
Therefore, p?(Qnc) = p%(Q}.) = p%(Q;.) will be used for the remainder of this chapter.
The dyadic diffraction coefficients for the central and non-central diffraction points

D"(Q) = — %% Du(Q@) T(£,0) (182)
and '
fL(Qm:) =—9'P Du(@nc) Tnc(€,7,0), (183)

respectively. The diffraction coefficient D;(Q.) is identical to the UTD half-plane
diffraction coefficient. Also, the caustic correction transition functions T(¢,0) and
Tnc(€,7,0) are those defined in (655) and (656) of Appendix B, respectively.

Two important facts can be observed about the result in (181). It was observed

that the uniform asymptotic expansion consists of the non-uniform expansions for the
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Figure 15: Caustic lit region diffracted ray geometry for the radiation by a source on
a flat plate with a curved edge.

central and non-central stationary phase points multiplied by the transition functions
T.(£,0) and T,.(¢,7,0), respectively. This is also true for the diffracted field as
expected. Also, since the non-uniform contributions and the transition functions
form a reciprocal result we can use this fact for the case where the source is located
on the plate.

We are now in a position to use reciprocity to obtain the field radiated by a source
on the flat plate. The radiated field ray structure shown in Figure 15. To obtain the

e—ikRe

reciprocal set of diffracted field expressions, we begin by noting that the factor o

where R. is the distance from the central diffraction to the far-zone point, has been
suppressed in the plane wave incidence case. This factor must be reintroduced in
order to obtain the standard ray optical form. Also, s and 3 must be interchanged

with s’ and 1, respectively. Next, the amplitude spreading factor must be rewritten
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as

PV (184)

slpd +s] &
where the caustic distance is now determined using (10) of Chapter 2. The field

radiated by a source on a flat plate can be rewritten as
- —-Jks =L —jkRe
#r) ~ (B0 S } Q@) e
+ {80 =] Tenvre.)

e—jk[Rc‘—a';e(Quc)]
- {Fo s

ﬂC

X

R,

) B @@

—Jk[Rc"'! Te (Q nc)]

X 185
= (185)
where the far-zone approximation
— 8 Te(Qne : for phase terms
R, ; for amplitude terms

can be used to rewrite the diffracted field expression in the standard form. Also, Ry is
the distance from the non-central diffraction points to the far-zone point. Therefore,
the field radiated by a source on a flat plate is

—Jch

B(P) ~ F(Q)-D (Q1/r(Q0)

-JkRm:
+ B(QL)-D (@i Wr(@m) 7
) e~ JkRnc
+ B(Qr)- D (@Vr(@m) - (187)

which is again consistent with the UTD diffracted field expressions. The dyadic
diffraction coefficients used here are those given in (182) and (183) except the recip-
rocal forms of ¢ and Dj(Q.) must be used. Substituting (184) into (178) we find
that

n = —sgn {p%(Qc)} (188)
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where p?(Q.) is found using (10) of Chapter 2 and

'\/2ks + Fo(Qne) — &, + 8! | =73/ (189)

for use in the caustic correction tramsition functions. Next, using reciprocity and
recalling that the source is located on the face of the plate, ¥F = F3). Substituting
this into the hard polarized half-plane diffraction coefficient we obtain,

D@0 = g sec %) FlkLaty) (190)
227k sin A ,B 2
where
L = §'sin’p, (191)
a(¢)) = 2 cos® (—12/1) (192)

and a factor of % has been included because the incident and reflection shadow bound-

aries overlap.

4 The Uniform Asymptotic Expansion of the Diffracted
Field Integral Equation in the Caustic Shadow

Region

The field in the caustic shadow region must also be determined in order to obtain a
uniform asymptotic expression for the diffraction by a curved edge. This asymptotic
expansion must be performed in a way that is consistent with the expansion on the
lit side in order to obtain a uniform result. This section is devoted to the asymptotic
expansion of the diffracted field integral equation for the shadow side of the caustic.

It is assumed that only one diffraction point exists in the caustic shadow region as
shown in Figure 16. This occurs because the two non-central diffraction points have
coalesced and disappeared. The uniform asymptotic expansion derived in Section 3
of Appendix B can be utilized with these assumptions in mind.

First, m = 0 in (614) of Appendix B because the integrand of the integral in (168)
does not contain a zero at the central stationary phase point. As explained in Sec-

tion 1 of Appendix B, if the integral has one real stationary phase point and two
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Figure 16: Reciprocal ray geometry for the diffraction by a curved edge in the caustic
shadow region.
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complex conjugate stationary phase points, then p = 5 where g = sgn {h™(z.)} and

7 = sgn{h"(z;)}. Finally, it is assumed that k >> 1 and F(z.) is a smooth and

slowly varying function of z. about the central stationary phase point. From (673)
of Appendix B the diffracted field integral equation in (168) can be approximated as

BU(P) = $B) 5 [ Fle)Mea,

2T
kh1(z,.)

i 1 \/2_ j3nm/4_jkh(zc)
Y5 o 2|kh1(z )|~°»/2 erre

< {Fra) + 3 CeIFE)} TE2) (193)

ejrrrr/4 ejkh(zc)T,(f, 0)

where the function C(z.) is defined as

_ 3khT(zg)|  h™(ae)

C(z:) = . Az (194)
and the argument of the caustic correction transition functions is
- l\/zk[h(m,,c) — h(z.)] | e~/ (195)

from (626) of Appendix B. It is easily shown using (753a) and (764a) of Appendix D
that the value of the phase function is

h(zc) = —s. (196)

at the central stationary phase point and using (756a) and (765a) of Appendix D that
the value of the phase function is

h(zﬂc) = —3, * 'Fe(an) — 8nc (197)

at the non-central stationary phase points. The argument of the transition functions

becomes

.\/21; T ( Qo) — 8me + 8] | €= (198)

using these in (195). Also, from (753c) and (764c) of Appendix D the second derivative

of the phase function is

B = ['1" o (1%9)
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at the central stationary phase point which makes

7 =sgn{h"(z;)} = —sgn {sc[ PQ) } - (200)

p(Qc) + 5]
The next item required for the uniform asymptotic expansion is
Di(Q-
oy = D92 -

which is the amplitude function of the integral evaluated at the central diffraction
point. It is now advantageous to write C(x.) in terms of the derivatives of the phase
function with respect to arc length. Therefore, recalling (764c) and (766) from Ap-
pendix D we find that

| C(z) = C(L) - 4x3(Q.) (202)
where
3khT(L)]  hV(l)

l€[? h7 (1)
and h"(l.) and h™(l.) are given in (753c) and (753¢) of Appendix D, respectively.

Cc(l) =

(203)

The final quantity required for the use of the uniform asymptotic expansion is the
second derivative of the amplitude function of the integral with respect to z.. Differ-
entiating (170) twice with respect to z. and evaluating the second derivative at the
central diffraction point, we obtain

1 @Du(@)| _ Du(Q.) { &r &sinf'

c
2
dz?

} (204)
QC QC
where (767a), (767b), (7792), (779b), (810b) and (811) have been used to simplify the

result. Finally, substituting (196) and (199) through (204) into (193) and simplifying,

we obtain

o RS PUD) ke
EX(P) ~ E'Q)D Q) T1a0.) + 4

+ E'(Qc) ) %S(Qc) \ s, [pdngc);)-i- sc) e (209)

as the asymptotic form of the diffracted field on the shadow side of the caustic. The
dyadic diffraction coefficients at the central diffraction point are

D°(Q.) = - 33 Du(Q) Ti(£,0) (206)

69




D (Q) = -3 DDu(Q)T(6,2) C (207)

where the caustic shadow region caustic correction transition functions 7,(£,0) and
T,(¢,2) are defined in (674) of Appendix B. Also, Dx(Q.) in (206) is the UTD
half-plane diffraction coefficient for the hard polarization. The diffraction coefficient
Di(Qc:) in (207) is given by

e-—j-rr/4 8, d .
D)= gz { g o7 + S eeaDu(@) L ang

where C(z.) and F"(z.) are defined in (202) and (204), respectively. This expression

can now be written in terms of the derivatives with respect to arc length as

1 [—e /4 1
Dh(QC) = 5}7]:{—\;5_71_—’;-30}-11(16:)‘*'Zc(lc)Dh(Qc)

2 Sc Pd(QC)
~(QID(Q.) | e (209
where
I 1 Dy (Q' Du(Q. &?sin B
F (l ) = 5. ;;gQ )l ﬁ‘ng {W Sc dI2 8 Qc} (210)

and C(L.) is given in (203). Next, by substituting (767c), (779c) and (812) into (210)

we obtain
_e_j"“ 1 _ d2D;,(QC)
ok T ) = —
~ Du(Q.) {l [1— —;—(i%] -nz(czc)cosw;} (211)

where Dj(Q.) is the hard polarized UTD half-plane diffraction coefficient and ﬁ%%&l
is given in (812) of Appendix D. Therefore, substituting (211) into (209) we obtain

Da(Q) = — {dzDh(Qc) _ Dy(@) ( %2 [1_ e cos¢c]

27k di? Pg(QC)
. ;1 8¢ Pd(QC)
+(Qint vl -3¢0 ) |2 o)

which is the new curvature dependant diffraction coefficient.
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Figure 17: Ray geometry for the diffraction by a curved edge in the caustic shadow
region.
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We are now in a position to use reciprocity to obtain the field radiated by a source
on the flat plate. The radiated field ray structure shown in Figure 17. To obtain the
reciprocal set of diffracted field expressions, we begin by noting that the factor ¢ I’;Rc ,
where R, is the distance from the central diffraction to the far-zone point, has been
suppressed in the plane wave incidence case. This factor must be reintroduced in

order to obtain the standard ray optical form. Also, s must be interchanged with s'.

Using (184), we can rewrite (205) as

#r) ~ (B0} B @)@ S
+ {B0 ST} Bea @) o s (213)

where the caustic distance p?(Q.) is given by (10) in Chapter 2. Recognizing that the

incident field is now a spherical wave

F(P) ~ 5(Q.) D°(Q) Vri(@n)
+ B(Q)-B°(@0) /(@) o (214)

which is again consistent with the UTD diffracted field expressions. The dyadic
diffraction coefficients used here are those given in (206) and (207) except the recip-
rocal forms of ¢, Dx(Q.) and Dy(Q.) must be used. Substituting (184) into (200) we
find that

n=—sgn {p(Q.)} (215)

where p?(Q.) is found using (10) of Chapter 2 and

e~ Jm/4 (216)

l\/Zk 8- Te(Qnc) — 85 + 8]

for use in the caustic correction transition functions. Next, using reciprocity and
recalling that the source is located on the face of the plate, ¥¥ = F4). Substituting
this into the hard polarized half-plane diffraction coefficient we obtain,

e‘j’r/4

Da(Q.) = sec ‘b Flksla($.) (217)
227k
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where
a(4.) = 2 cos’ (%) (218)

and a factor of % has been included because the incident and reflection shadow bound-
aries overlap. Finally, it is necessary to determine the reciprocal form of Di(Q.) given
in (212). By interchanging 9. with 9, s. with s, and recalling that the source is lo-

cated on the face of the plate we obtain

p*(Qc) [&*Di(Q:) 8
2u@) = T - oo (g -5
+ K3(Qc)sin? 9, — %C(zc))} (219)

where p%(Q.) is found using (10) of Chapter 2 and Dx(Q.) is given in (217). Also,
C(l.) is given in (203) where the reciprocal forms of h™(l:) and A" () are

n _ -1
from (753c) of Appendix D and
R = (K@) - K@) (14 cosp) +
1 LA
o e (22)

from (753e); respectively, where again p%(Q.) is found using (10) of Chapter 2. Finally,
substituting (818) into (814) of Appendix D we find that

(1) _cosd)c(l cosp) . (11)
DY@ = <% 55 ¥ (@) (222)
where iy
D@ = STz sec (%) Rfhstatwe) (229

and a(3,) is given in (218). Also, a factor of ; has been included in (223) because
the incident and reflection shadow boundaries overlap. Substituting (217), (222)
and (223) into (812) of Appendix D we obtain

d?Dy(Q.) [ cost (1 — cos Pe)
di? - 2P§(QC)

73

} p{"(Q.)




1 s, _ 1 ___s’g_ 2
* {2(32)2 [l’pg(cza] AR [1 pg(czc)]}
x [Da(Q2) - DY(Q.)] (224)

which is the last item required for the curvature dependant diffraction coefficient
in (219). These equations can now be used to calculate the diffracted field on the

shadow side of the caustic.
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SECTION 6

Numerical Calculation of the Field
Radiated by a Short Monopole on
a Flat Plate with a Curved Edge

It is important to numerically confirm that the caustic corrected UTD (CC-UTD)
solution derived in Chapter 5 is accurate. To do so, two geometries are considered
in this chapter. First, the radiation by a monopole mounted on a flat plate with a
curved edge defined by a parabolic equation is determined. This CC-UTD solution
is then compared to the classical UTD solution. The other geometry considered is
the radiation by a monopole on an elliptic disk. The CC-UTD solution is compared
to the classical UTD solution and a Moment Method (MM) solution. This chapter is
devoted to the numerical confirmation of the CC-UTD solution of Chapter 5.

1 Radiation of a Short Monopole on a Flat Plate
with an Edge Defined by a Parabolic Equation

The first geometry to be studied is the radiation by a monopole on a flat plate with an
edge defined by a parabolic equation. To conform to the assumptions of the derivation
of the CC-UTD in Chapter 5 it is important that the monopole is mounted along the
symmetry axis of the parabolic edge. Also, the radiation pattern must be taken in
the plane of symmetry of the parabolic edge. This geometry is shown in Figure 18.
This section consists of two parts. First, the parameters required for the CC-UTD
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Short
Monopole

Figure 18: Geometry for the radiation of a short monopole on a flat plate with a
curved edge defined by a parabolic equation.
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and the UTD solutions are determined. Next, the radiated field is calculated and

compared.

1.1 Parabolic Edge Radiated Field Parameters

In order to determine the geometric parameters required for the use of the CC-UTD

and the UTD, the edge of the plate will be defined as
z? = 4ay. (225)

where a is the focal length of the parabola. First, the diffraction points can be deter-
mined by enforcing the fact that cos 3 = cos 8. In doing so, the central diffraction
point is found to be located at

Yc = 0 (226)

and the non-central diffraction points are found to be located at

Yo+ ec',/(s;)? — (¥o)? cot. ;ifsl >a

Ync = (227)

Yo — Jecr/(¥o)? — (81)* cotye  jif s <a
where y, = s/, —2a, €. = sgn {sin %} and the monopole location s is fixed. Using this
result it is easy to determine the caustic lit and caustic shadow regions. If y,c > 0
the far-zone point is in the caustic lit region and if y,. < 0 the far-zone point is in
the caustic shadow region. Also, the distance from the monopole to the non-central

diffraction point is
1 _Ync— Yo
" coste

The next quantities needed are the curvature and the second derivative of the curva-

8

(228)

ture at the diffraction points. The curvature of the edge is defined as [33]

n _ lycl:,
SO T )
where using (225) it is easy to show that
1 a 3/2
5(@) = = (a : ye) (230)
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for a point on the parabolic edge. Next, evaluating (230) at the central and non-

central diffraction points we obtain

1
5(@) = o (231)
and . ] 32
K,g(an) = é’; (a T ync) ’ (232)

respectively. Also, differentiating (230) twice with respect to z. and evaluating it at

the central diffraction point we obtain
1 3 -3
Ky (Qc) = —3r,(Qc) = @ (233)
It is now necessary to determine the diffraction angles 4 and B at each of the diffrac-
tion points. The value of 9 at the central diffraction point is 7., the angle used
to specify the pattern and B. = B = . The angle B,. = . at the non-central

diffraction points is found using cos B, = 3, - € which results in

. a4 Ync SinZ ¢c
N Bpe = 4| —————— . 234
8 ﬂ \' a + Ync ( )

The angle 7 at the non-central diffraction points is found to be
2a cos Y,
sin By \/ (2a)? + 4ayn.

Next, it is important to determine the distance to the second caustic of the central

(235)

€OSYpe =

and non-central diffraction points. To do so, we recall (10) from Chapter 2 to find

2as,
< 2
2a — 8. (1 4+ cos,) (236)

Pd(QC) =

as the caustic distance at the central diffraction point, and

_ (a4 Ync) sy, sin’ Bre
P (@nc) = (e t9n)nif—a (237)

as the second caustic distance at the non-central diffraction points. Also noting that

Ec . 7-"e(an) = Ynce COS ¢c, (238)
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we are able to determine the argument of the caustic correction transition functions
and the far-zone approximation for the non-central diffraction points. Finally, it is
necessary to determine the Geometrical Optics (GO) field and the incident field at
each of the diffraction points. It is commonly known that the field radiated by a short

monopole on an infinite ground plane is [35, 36)

. R e-ikR  rx
E(P) = 0,56 =T [5 - 0] (239)
where
E, = Z;f:;“d = —j60Lkd (240)

and R is the distance from the monopole to the far-zone observation point. Also, Z,
is the impedance of free space, I, is the current on the monopole and d is the length
of the monopole. Using (239) we find that

e_jk"'c

E(Q)=4v'E, = (241)
is the field incident at the central diffraction point and
—. -~ e—jk";kc
E(Qnc) = ¥'E, (242)

nc

is the field incident at the non-central diffraction points. Next, using the far-zone

approximation
R~ R, — s, cos, ; for phase terms (243)
R, ; for amplitude terms
in (239), the GO field is given by
; - ., gmikRe
ECO(P) = 9.E, cos b, e?**cee R Ulr — 9. (244)

Now that we have the GO field and the necessary diffracted field parameters, the
diffracted field can be calculated using the expressions derived in Chapter 5. Us-
ing (4a) of Chapter 2 we find

- Ec (Zne siny) + 1,7;C (2a)

¥= sin fncy/(2a)? + 4ay,.
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Figure 19: Polarization unit vector directions for the radiation by a short monopole
on a flat plate with a parabolic edge.

at the non-central diffraction points. These polarization vectors are shown in Fig-
ure 19. The B, components of each of the non-central diffraction points will cancel
leaving only the %, components since the non-central diffraction points are symmet-
rically located. Therefore, the diffracted field in the caustic lit region (i.e., yn. > 0)

is

3 - e—iksl [ e JkRe
Ed(P) ~ ¢c {"‘ Eo o } Dh(Qc) Tc(£7 0) pd(QC) Rc
—~ —_ ’jks;xc
+ ¢c 2 Eo 2a : /
sin ,B,,c\/(Za)Z +4ay,. Sne
e—ijC

XDh(an) Tnc(f,’ﬂ, 0) \ /pd(an) ejkync cos e _R_:_ (246)

where (187) has been used in conjunction with the diffracted field parameters found
previously in this subsection. Also, the diffraction coefficient is given by (190)
through (192) of Chapter 5, the argument of the caustic correction transition func-

tions is

€= '\/ 2k[yn. cos . — 8., + 8] | e~/ (247)
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from (189) and 7 is given in (188) of Chapter 5. Next, the diffracted field in the
caustic shadow region (i.e., Y. < 0) is
g-ike,

Fr) ~ %{-B ) @) n 60 V@)

[+

e~ jkR.

e= jkRe

+ {5 S5 m@men Vi@ T (249)

where (214) has been used in conjunction with the diffracted field parameters found
previously in this subsection. Also, the diffraction coefficient Di(Q.) is given by (217)
and (218) of Chapter 5 and Dy(Q.) is given by (203), (217) through (221), (223)
and (224) of Chapter 5. The argument of the caustic correction transition functions

1s

£ = 'ﬁk[ym cos P, — 8. + 8] e~/ (249)
from (216) and 7 is given in (215) of Chapter 5. These formulas now form a complete

CC-UTD solution. The sum of the GO field and the diffracted field corresponding to
either the caustic lit region or the caustic shadow region give the total radiated field.

1.2 Numerical Calculation of the Field Radiated by a Short
Monopole on a Flat Plate with a Curved Edge Defined
by a Parabolic Equation

The numerical calculation of the radiated field expressions derived in Subsection 1.1
confirms the uniformity of the CC-UTD. This also leads to some insight into the
physical phenomenology involved in this problem and the CC-UTD formulation. The
CC-UTD formulation is compared to the classical UTD solution to illustrate their dif-
ferences. This subsection is devoted to the numerical calculation of the field radiated
by a short monopole on a flat plate with a parabolic edge.

From (227) it is easily seen that if s, < a the non-central diffraction points have
a complex y location. This means that there is no caustic lit region for this case
and the classical UTD solution is valid. Also, if 8. & a there are an infinite number
of diffraction points when the observation is taken along the face of the plate since
the edge is defined by a parabolic equation. This type of ray structure has not been

considered here. Therefore, only the case where s, > a will be considered in this
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subsection. The quantity to be plotted throughout this subsection is

E (dB) = 20 loglo

¥.- E(P)| (250)

e—JikRc

where ﬁ(P) is the radiated field component. The factor E, “%z— is common to all

of the ray optical expressions and will be suppressed in all the calculations in this
| subsection.

For the sake of discussion, the central ray diffracted field is the first term in (246)
when P is in the caustic lit region or the first term of (248) when P is in the caustic
shadow region. These terms are labeled this way because they are the same except
the caustic correction transition functions differ on the lit and shadow sides of the
caustic. The non-central ray diffracted field is the second term in (246) in the caustic
it region. Finally, the curvature dependant central ray diffracted field is the second
term in (248). Although this diffracted field has a similar form as the central ray
diffracted field, it has a different curvature dependant diffraction coefficient and a
different caustic correction transition function.

The first case considered here consists of a flat plate with a parabolic edge with
a focal length of 2 = 3A and a monopole location of s/ = 5\ as shown in Figure 18.
We begin by looking at the GO field and the central ray, the curvature dependant
central ray and the non-central ray diffracted fields as shown in Figure 20. Several
interesting facts about the CC-UTD can be seen from this plot.

First, as discussed in Chapter 5, the Incident Shadow Boundary (ISB) and the
Reflection Shadow Boundary (RSB) overlap and occur at 9. = n. The Caustic
Boundaries (CB) occur when the amplitude spreading factor of the diffracted field
expressions becomes singular. Therefore, equating the denominator of (236) to zero,

cos Pep = {%TG - 1} (251)

are the locations of the CB’s. The CB’s occur at 1.5 = 78.4630°, 281.5370° for the
dimensions chosen here. These values are shown in Figure 20. It is also easy to see
how the solutions on the lit and shadow sides of the caustic differ. The central ray

and curvature dependant central ray diffracted fields are each bounded in the caustic
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Figure 20: Diffracted field components for a plate with a focal length of @ = 3A and
a monopole location of s, = 5.
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shadow region. In this region, the curvature dependant central ray diffracted field
can be viewed as a correction to the central ray diffracted field. However, the central
ray and non-central ray diffracted field contributions are each singular in the caustic
lit region. The central ray diffracted field contribution has a singularity that opposes
the singularity in the non-central ray diffracted field. These singularities cancel and
the proper field is obtained in the caustic lit region when these two contributions are
added to obtain the total diffracted field.

Another interesting effect that appears in Figure 20 is that the non-central
diffracted field is infinite along the face of the plate. To explain this phenom-
ena; (227), (228) and (234) can be used to obtain

(8L — 2a)sin 9 + €c4/(8L)? — (90)? cos P,
(s, — @) sin . + £c4/(s1)2 — (%)? cos ¥

x4/ (80)? = (35)° [sin 9| (252)

which is proportional to the large parameter used in the asymptotic expansion of the

double spectral integral form of the ITD diffracted field. Next, we find that

) (8. — 2a)sin . + €c4/(8L)? — (3o)? cos .
Km =1 (253)
Yem02m (s; — a)singpc + Ecy/ (8£)2 = (%o)? cos e

ks!, sin’ B, = 2ky/a (s, — a) [sin 9. | (254)

as the observation point approaches the face of the plate. This result clearly shows

1?2 —
8,.8I0° Bpe =

which makes

that the large parameter used in the asymptotic expansion of the double spectral
integral form of the ITD diffracted field becomes very small near the face of the
plate. Therefore, this asymptotic expansion is invalid in these directions. This is not
a failure of the ITD or the CC-UTD, it is simply an effect that has been neglected.
Also, sin B,. — 0 near the face of the plate since sin? B, approaches zero faster than
8. approaches infinity. When sin 8,. — 0 the plate will support waves that travel
along its edge. These waves are commonly called edge waves. This geometry can
support edge waves because in is semi-infinite in extent. Edge waves will not be

supported by most practical geometries and therefore are not a major problem.
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Figure 21: Radiated field components for a plate with a focal length of a = 3A and a
monopole location of s, = 5A.

The diffracted field components can now be added to obtain the total diffracted
field. The GO, diffracted and total fields are shown in Figure 21. This figure clearly
shows that the diffracted field is not only bounded near the caustic, but it is also
smooth and continuous. Therefore, the CC-UTD is uniform across the caustics of the
diffracted field. It is also clear that the diffracted field retains a discontinuity along
the incident and reflection shadow boundary. Adding the GO field and the diffracted
field, we see that the total radiated field is smooth and continuous everywhere.

Finally, Figure 22 shows a comparison between the CC-UTD solution and the
UTD solution. This figure shows that the CC-UTD solution corrects for the caustics
of the UTD solution. It also shows that the CC-UTD solution smoothly reduces to
the UTD solution away from the caustics. This is one of the requirements of a uniform
solution.

As another example, Figure 23 shows a comparison between the CC-UTD solution
and the UTD solution for a plate with a focal length of @ = 3.5\ and a monopole
location of s, = 10A. This figure shows that the CC-UTD solution corrects for the
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Figure 22: Total radiated field comparison for a plate with a focal length of a = 3A
and a monopole location of s = 5.
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Figure 23: Total radiated field coinpaxison for a plate with a focal length of a = 3.5\
and a monopole location of s, = 10A.
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Figure 24: Total radiated field comparison for a plate with a focal length of a = 0.05A
and a monopole location of s, = 200A.

caustics of the UTD solution. It also shows that the CC-UTD solution smoothly
reduces to the UTD solution away from the caustics.

Finally, Figure 24 shows a comparison between the CC-UTD solution and the
UTD solution for a plate with a focal length of a = 0.05A and a monopole location
of s/ = 200). The dimensions of this geometry have been exaggerated in order to
illustrate the breakdown of the CC-UTD solution. This breakdown occurs when the
caustic boundaries are near the GO shadow boundary; therefore, only this region is
plotted. The CC-UTD and UTD solutions are seen to agree very well away from this
region and unnecessary to show for this discussion.

The discontinuity along the GO shadow boundary is a result of the fact that the
caustic correction transition functions are multiplied by the Fresnel transition func-
tion. This product does not properly correct the fields when the caustic boundaries
are near the GO shadow boundary. This is a gradual breakdown in that the fields

slowly become less accurate as these boundaries approach each other. However, this
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will not impact many practical problems due to the extremely exaggerated dimensions

necessary for this breakdown to occur.

2 Gain Normalization of a Uniform Geometrical
Theory of Diffraction Solution

The UTD is a good method for determining the field radiated by a monopole on a
flat plate. However, the UTD field solution must be normalized to obtain the gain of
that antenna. This section is devoted to the discussion of two simple procedures that
can be used to find the gain of a short monopole mounted on a structure using the
UTD.

This discussion begins with the definition of gain. It is assumed that the antenna
is lossless for the purposes of this work. This means the directive gain is the quantity

of interest. The directive gain of an antenna is defined as {35, 36]

_ 4xU(r,6,9)

255
‘Dg Prad ( )
where the root-mean-squared (r.m.s.) radiation intensity is
= 2
U(r,6,4) = 7. |E(7‘, 6, ¢)! (256)

and P,.q is the total r.m.s. power radiated by the antenna. The directive gain can
now be rewritten as

o tn|Eer b9 B0

= 2
g Z. Proa 30P,oq (257)

where

Ep(r,8,¢) = lim e’ E(r,6,9) (258)

is the far-zone electric field. The directive gain can also be converted to decibels using
D, (dB) = 10log,, [ D] (259)

since it is a power ratio.
The UTD solution for a monopole mounted on a flat plate uses the field radiated

by a monopole on an infinite ground plane as its starting point. The diffracted field
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is then included to account for the fact that the plate is finite in extent. Therefore,
the total UTD field is proportional to the field of the monopole on an infinite ground
plane. It is commonly known that the field radiated by a short monopole on an
infinite ground plane is given by (239) and (240) of Subsection 1.1. It is necessary
to determine the current on the monopole, I,, and the total r.m.s. power radiated in
order to obtain the gain of this type of antenna using the UTD.

The first method for determining the directive gain of a short monopole mounted
on a structure comes from basic antenna theory. It is easily shown that the total

r.m.s. power radiated by a short monopole is [35, 36]

2Z.|1,|*(kd)?
3

Proa = = 80|L,|*(kd)? (260)

where I, is the current on the monopole and d is the length of the monopole. The

directive gain in (257) can now be rewritten as

3 EF 7'701¢
-} |Fetrted)

(261)

where Ep(r,0, @) is the far-zone electric field given in (258) and E, is given in (240).
It is important to note that this expression is valid only if the length of the monopole
is very short.

The closed form expression for the total r.m.s. power radiated by the monopole
becomes less accurate as the length of the monopole increases. This occurs because
the function used to model the current on the monopole becomes less accurate. In
these cases, numerical techniques are typically used to obtain a more accurate model
of the current. The Method of Moments is a numerical technique that is used to solve
for the current induced on the surface of an antenna. This is accomplished by making
the geometry consist of a wire segment attached to the structure. It is then assumed
that the radiation in due to a voltage excitation located at the point where the wire
attaches to the plate. This excitation voltage, V,, is a known input into the MM
solution. The currents induced on the antenna are then obtained using the Method
of Moments. The current on the monopole, I,, has now been solved for and the total

r.m.s. power radiated is

Praa = Re{V,I}. (262)
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Figure 25: Ray geometry for the radiation of a short monopole on an elliptic disk.

Therefore, if the current on the wire is obtained using the Method of Moments, it
can be used in conjunction with the UTD solution to obtain the far-zone electric
field in (258). The gain can then be obtained using (257) and the total r.m.s. power
generated by the MM solution.

3 Radiation of a Short Monopole on an Elliptic
Disk

The other geometry to be studied in this chapter is the radiation by a monopole on
an elliptic disk. To conform to the assumptions of the derivation of the CC-UTD
in Chapter 5 it is important that the monopole is mounted in the center of the disk
and the radiation pattern must be taken in the plane of symmetry of the ellipse.
This geometry is shown in Figure 25. This section consists of two parts. First, the

parameters required for the CC-UTD and the UTD solutions are determined. Next,
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the radiated field is calculated using the CC-UTD and the UTD. These results are

compared to a MM solution.

3.1 Elliptic Disk Radiated Field Parameters

It is important to accurately define the edge of the elliptic disk in order to determine
the diffraction parameters required to use the CC-UTD and the UTD. An ellipse is

defined by
z\? | (¥\? _
(3)+(%) - (23)
where a and b are the principle axes of the ellipse in the x and y directions, respectively.

The x and y coordinates of a point of the edge of the elliptic disk can now be related
by

z, = acosv (264a)

Ye = bsinv (264b)

where v is the only variable. The diffraction points on the edge of the disk can be
determined by recalling that cos 8 = cos 3’ at these points. In doing so, we find that

— 3= —_—=
Voo = 55 Vo = 5 and

- Co

Ey ; if Co > - Cz
C.
§in v, = (265)
Ljen]2 i C<-C
v 02 b 0 2

are the diffraction points as shown in Figure 25. Also, £, = sgn {(b° — a?)cos,}

and

Co = (abcos,)? (266a)
G = B (8 —a?)cos’ o — (¥~ a?) (266b)

are used to determine the locations of the non-central diffraction points. Now that
the diffraction points have been found, it is easy to see that if |sinv,.| < 1 the far-

zone point is in the caustic lit region and all other cases correspond to the caustic
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shadow region. Next, the distances from the monopole to the diffraction points are

easily shown to be

\/a'Z + (8% — a?) sin’ vy, ; if (a? — b?) sin® v, < @?
85 = (267)

-3 \/a2 + (82 — a?) sin’ vy,

; if (a® — b?) sin® v, > a?

and s, = s, = b. The curvature of the edge at any point is found to be

no_ a*b
K.g(Q) - [a4 + (b2 - az) 33]3/2
ab
 [(esinv)? + (beosv)2*? (268)
from (229). Evaluating (268) at Qc0, @1 and @y We obtain
b
"o(Q) = ro(@a) = 5 (269)
and
K’Q(an) = ab (270)

1
[62 + (a? — b?) sin? v,.,c] ¥
respectively. Also, differentiating (268) twice and evaluating the second derivative at

@ and Q. we get
3b(a® — b?)

ab

kg (Qeo) = £g'(Qer) = (271)

which is used in the calculation of the curvature dependant diffraction coefficients in

the caustic shadow regions. Using the fact that 8 = B’ at the diffraction points,

T
Beo = Ba = ) (272)

sinv,)? + (a? — b2 sin? v, ) sin® v,
sinﬂm_\J(b o) + (a2 — B2 sin 4,) s 279)

- b? + (a? — b2) sin’ vy,
are the oblique incidence angles at the diffraction points. The incidence angles at the

diffraction points are ¥/, = 9., = %, = 0 since the monopole is located on the disk

and

1/)c0 = ¢oa (274)
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¢c1={7r"¢° i g, < (275)

37"""‘1["0 ;if¢o>7r

and
— @ 81N Vg €OSY,

oS YPpe = (276)
. sin ﬂ,,c\/ b2 + (a? — b?) sin? v,

are the angles from the diffraction points to the far-zone observation point. The

caustic distances can now be determined using (10) of Chapter 2 and are given by

2
d _ a‘b
4 (QCO) - a2 — bg(l + COS’!/JO) ] (277)
2
d _ a‘b
P(Qa) = a? — b2 (1 — cos ) (278)
and
B*(vp.)s!,. sin? B
d nc)°nc nc
nc) = - " 2
P (Qnc) B4(vy) sin? B,c — a?b? + a?bs!,, cos 1), 5in v, (279)
where
B(vne) = /% + (a2 — ¥?) sin’ vpe . - (280)
The GO field is found using (239) to be
. R ¢—IkR
EC9(P) = v, E,cos 1, 7 Ulr — 1, (281)
where
L= Zelokd __eorka . (282)

Also, (239) can be used to determine the incident field at each of the diffraction points

a
® . N o e—ikb
E'(Qw) = E'(Qu) =¥'E, — (283)
at the two central diffraction points and
. -~ e"‘jk’:u:
E (an) =v'E, (284)

nc

at the two non-central diffraction points. The far-zone approximation of the distance

from a diffraction point to the far-zone observation point, Ry, is

R —bsinvgcosy, ;for phase terms

R ; for amplitude terms
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Figure 26: Polarization unit vector directions for the radiation by a short monopole
on an elliptic disk.

where R is the distance from the center of the elliptic disk to the far-zone point and
vq is the value of v corresponding to the diffraction point that is to be referenced to
the center of the disk. It is now necessary to determine the various components of
the ray fixed coordinate 9 in terms of the global coordinate system. In doing so, we
find that . = 9, and 9 = — 9, at the central diffraction points along with

- ﬁo (bsin 9, cos v, ) — 12,, (asinvy)

sin ﬁnc\/ b2 + (a2 — b2) sin’ v,

$= (286)
at the non-central diffraction points which have been found using (4a) of Chapter 2.
These polarization vectors are shown in Figure 26. Now, since the non-central diffrac-
tion points are symmetrically located about the x-axis, the B, component of each of
the non-central diffraction points cancel to leave only the 7, components as expected.
Therefore, the diffracted field in the caustic lit region is

. R e ikb _ e kR

BAP) ~ Fo{ B S | Dr(Qa) Tt )y (@) o0 o

—jkb e—ikR

+ 3o B 5} Du(Qa) s 0@ e

+ P2

. —akal
a sin vy, e~ Iksnc }
!

E,
{ sin ﬂnc\/l;'2 + (02 - b2) S:.l:[l.2 VUne Enc
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e-ij

XDh(an) Tnc(éﬂc, 7, 0) /Pd(an) ejkbsin Unc CO8 Yo

where (187) of Chapter 5 has been used with the diffracted field parameters found
in this subsection. Also, the diffraction coefficient is given in (190) through (192)

(287)

of Chapter 5. The arguments of the caustic correction transition functions must be
carefully determined since the non-central diffraction points coalesce at both @ and

Qc1- Using (189) of Chapter 5 we find that

b= l\/2k[(sin Vpe + 1) beos P, — sl + b] g33n/4 (288)

is the argument of the caustic correction transition functions for determining the

diffracted field near the caustics of Q. and

é = I\fzk[(sin Une — 1) beos g, — 8 + b] | e 737/ (289)

is the argument of the caustic correction transition functions for determining the
diffracted field near the caustics of Q.. Next, the argument of the caustic correction

transition functions for the non-central diffracted field is

¢ __{ﬁo ;i —1 < sinv,. <0

(290)
& ;i 0 <sinv,. <1

which has been chosen to account for the fact that the non-central diffraction points

coalesce to both Q. and Q.;. Also, from (188) in Chapter 5

n=—sgn {1%(Qe0)} = —sgn {p"(Qu1)} (291)

where p?(Q) and p?(Q.1) are given by (277) and (278), respectively. Finally, the

diffracted field in the caustic shadow region is

B(p) ~ %{-Eo G—Zkb}ph@co)f,(so,c))\/ﬁw_w e £
. g { B e':‘"} Di(Qa) T O (@) Moeoe S
; {E e_:cb}”h(cza)T,(el,z)\/p_@T)e""“°“”"%'f (262)
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from (214) of Chapter 5 and the diffracted field parameters found previously in this
subsection. Also, the diffraction coefficient D,(Q.) is given by (217) and (218) of
Chapter 5 and Dj(Q.) is given by (203), (217) through (221), (223) and (224) of
Chapter 5. The argument of the caustic correction transition functions for determin-

ing the diffracted field near the caustics of Q. is

e~ Imr/4 (293)

60 == ’J2k[(sin 'v”c + 1) bcos ¢0 - 8:16 + b]

and the argument of the caustic correction transition functions for determining the

diffracted field near the caustics of Q. is

b = ‘\/2k[(sin ne — 1) beos 9, — 8, + b] | e~ Im/4 (204)

where 7o = —sgn {pd(Qco)} and 7; = —sgn {pd(ch)}. It is important to note that
it is possible for {(sin v, & 1) bcos ¥, — 8}, + b} to be complex in the caustic shadow
region. Although this case should be analyzed using uniform steepest descent tech-
niques, it is treated here heuristically. The caustic correction transition functions
are not critical when this occurs because it is usually in the deep caustic shadow
region. Therefore, |(sinv,, +1)bcos®, — s}, + b| can be used because it will pro-
duce a transition function argument that is piece-wise continuous in magnitude. The
ramifications of this approximation will be discussed in the next subsection when
these exﬁressions are calculated numerically. These formulas now form a complete
CC-UTD solution for the radiation by a monopole on an elliptic disk. The sum of the
GO field and the diffracted field corresponding to the caustic lit region or the caustic
shadow region give the total radiated field.

3.2 Numerical Calculation of the Field Radiated by a Short
Monopole on an Elliptic Disk

The numerical calculation of the expressions deriv;ad in Subsection 3.1 confirms the
uniformity of the CC-UTD developed in Chapter 5. This subsection contains a com-
parison between the CC-UTD, the UTD and a MM solution. The field radiated by
a short monopole on an elliptic disk is calculated in this subsection to illustrate the

practical use and accuracy of the CC-UTD developed in Chapter 5.
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The directive gain of this antenna will be plotted throughout this subsection. The
CC-UTD and the UTD field solutions are converted to directive gain using (261)
derived in Section 2. Also, the MM solution is generated throughout the subsection
using the general program developed by Nehrbass, Gupta and Newman [37]. This
MM solution calculates the gain of the antenna using the second method discussed in
Section 2. It should be noted that the gain calculations using the CC-UTD and the
UTD are entirely independent of the gain calculations using the MM. This results in
an unbiased comparison of the resulting solutions.

First, as discussed in Chapter 5, the Incident Shadow Boundaries (ISB) and the
Reflection Shadow Boundaries (RSB) overlap and occur at 9, = 0, 7. The Caustic
Boundaries (CB) occur when the amplitude spreading factors of the diffracted field

expressions become singular. Therefore, equating the denominators of (277)‘ and (278)

€08 Popn = {(%)2 - 1} (205)
cos Yo, = {1 - (%)2} (296)

as the locations of the CB’s of Q and @, respectively. It is clearly seen from these

to zero we obtain

and

expressions that if a > v/2b none of the diffraction points will merge. This means
that there are no caustics for the geometries satisfying this condition.

The first pattern cut is taken by making @ = 2 m and b = 5 m at a frequency
of 200 MHz. The directive gain in the y-z plane for this antenna is calculated using
the CC-UTD, the UTD and the Method of Moments and the results are shown in
Figure 27. It is clearly seen that caustics will occur in this plane because a < V2b.
The CB’s of Qu occur at ¥cp, = 147.14°, 212.86° and the CB’s of Q. occur at
tbep, = 32.86°, 327.14° for the dimensions chosen here. These boundaries are clearly
seen in Figure 27. One of the advantages of the CC-UTD is that it is a fast way
to compute the radiation pattern. For this geometry, the MM solution required 29
minutes and 19.24 seconds to compute on a Silicon Graphics Indigo/R4K workstation.
However, the CC-UTD and the UTD solutions were run concurrently on the same

computer and required only 1.23 seconds. It is seen from this figure that the CC-UTD
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Figure 27: Directive gain comparison in the y-z plane for a short monopole mounted
on an elliptic disk with 2 = 2 m and b = 5 m at a frequency of 200 MHz.

is bounded and uniform across the caustics. It also smoothly reduces to the classical
UTD away from the caustics. It can also be seen that the CC-UTD and the MM
solutions differ only by about 2 dB in the back lobe region. It can also be seen that
there are small discontinuities along the GO shadow boundaries. This occurs because
double diffractions have been neglected in this calculation.

As discussed at the end of Subsection 3.1, {(sin vp = 1) bcostp, — s/, + b} in the
arguments of the caustic correction transition functions may become complex in the
caustic shadow region. The angles for which this occurs are

cos e = £4/1 — (%)2 (297)

by making C, = 0. These points are 9 = 23.58°, 156.42°, 203.58° and 336.42°
for this geometry and can be seen in Figure 27. It is seen from Figure 27 that this
has a negligible effect in the main lobe region and only a small effect in the back

lobe region. The field in these regions are piece-wise continuous as discussed in the
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previous subsection. In general, this has little noticeable effect for most practical
geometries.

The numerical integration of the classical Method of Equivalent Currents (MEC)
solution and the more recent ITD formulation is now performed to illustrate the
differences between them. It is important to note that only the integration of the
diffracted field contribution of the ITD is performed numerically and the remaining
integral contributions are taken to be the GO fields. Although this is not a complete
ITD solution, it is consistent with the formulations in this work and with the as-
sumptions of the MEC. This will result in an unbiased comparison of the two integral
formulations.

The MEC used here is the same as the one used by Greer and Burnside [11]. The
equivalent currents used by Greer and Burnside are the équiva.lent currents of Ryan
and Peters [4, 5] with two modifications. First, as discussed by Knott and Senior [9],
the substitution of sin? 8 = sin Bsin 8’ is made to enforce reciprocity. Second, the
GTD diffraction coefficients are replaced with the UTD diffraction coefficients for
normal incidence. These equivalent currents are then substituted into the radiation
integral and numerically integrated. The comparison between the CC-UTD, MEC
and MM solutions is shown in Figure 28. It is seen from this figure that the MEC
solution does a good job of correcting for the caustics. However, there is a difference
of about 2 dB between the MEC and MM solutions in the back lobe caustic regions.
This occurs partly because the equivalent currents used will not produce the complete
UTD solution when the method of stationary phase is applied to the integral. Since
the UTD diffraction coefficients for normal incidence are used, the stationary phase
evaluation of the radiation integral can not produce a UTD solution with the proper
distance parameters for obliquely diffracted rays.

Next, the diffracted field contribution of the ITD is numerically integrated and
added to the GO field. The comparison between the CC-UTD, ITD and MM solutions
is shown in Figure 29. It is seen from this figure that either high frequency solution
does a good job of correcting for the caustics. This figure also illustrates that the
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Figure 28: Directive gain comparison between the CC-UTD, MEC and MM for the
y-z plane pattern of a short monopole on an elliptic disk witha =2m and b=5m
at a frequency of 200 MHz.

CC-UTD solution is a good approximation of the original ITD diffracted field integral
equation.

To obtain the other principle plane radiation pattern for this disk, the values of a
and b are interchanged due to the definition of the angle 1,. Therefore, the other plane
of this disk is obtained by making a = 5 m and b = 2 m at a frequency of 200 MHz.
The directive gain in the y-z plane for this antenna is calculated using the CC-UTD,
the UTD and the Method of Moments and the results are shown in Figure 30. It is
clearly seen that no caustics will occur in this plane because a > 1/2b. Therefore, the
caustic corrections should have little effect and the CC-UTD and the UTD solutions
should be essentially identical. The computer run times for this example are the
same as those of the previous example. It is seen from this figure that the CC-UTD is
essentially the same as the UTD and in good agreement with the MM. Again, there
are small discontinuities along the GO shadow boundaries because double diffractions

have been neglected in this calculation.
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Figure 29: Directive gain comparison between the CC-UTD, ITD and MM for the
y-z plane pattern of a short monopole on an elliptic disk with a =2 m and b=5m
at a frequency of 200 MHz.
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Figure 30: Directive gain comparison in the y-z plane for a short monopole mounted
on an elliptic disk with a = 5 m and b = 2 m at a frequency of 200 MHz.
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Figure 31: Directive gain comparison in the y-z plane for a short monopole mounted
on an elliptic disk with ¢ = 1.5 m and b = 1.7 m at a frequency of 300 MHz.

The next pattern cut is taken by making ¢ = 1.5 m and b = 1.7 m at a frequency
of 300 MHz. The directive gain in the y-z plane for this antenna is calculated using
the CC-UTD, the UTD and the Method of Moments and the results are shown in
Figure 31. It is clearly seen that caustics will occur in this plane because a < v/2b.
The CB’s of Q. occur at ey, = 102.79°, 257.21° and the CB’s of Q. occur at
Pep = 77.21°, 282.79° for the dimensions chosen here. These boundaries are clearly
seen in Figure 31. For this geometry, the MM solution required 30 minutes and 28.58
seconds to compute and the CC-UTD and UTD solutions required only 1.19 seconds.
It is seen from this figure that the CC-UTD, the UTD and the MM are in good
agreement. Again, there are small discontinuities along the GO shadow boundaries
because double diffractions have been neglected in this calculation.

The other plane of this disk is obtained by making ¢ = 1.7 m and b = 1.5 m
at a frequency of 300 MHz. The directive gain in the y-z plane for this antenna
is calculated using the CC-UTD, the UTD and the Method of Moments and the

results are shown in Figure 32. It is clearly seen that caustics will also occur in
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Figure 32: Directive gain comparison in the y-z plane for a short monopole mounted
on an elliptic disk with ¢ = 1.7 m and b = 1.5 m at a frequency of 300 MHz.

this plane because a < v/2b. The CB'’s of Q occur at e, = 73.47°, 286.53° and
the CB’s of Q. occur at %z = 106.53°, 253.47° for the dimensions chosen here.
These boundaries are clearly seen in Figure 32. The computer run times for this
example are the same as those of the previous example. It is seen from this figure
that the CC-UTD, the UTD and the MM are in good agreement. Again, there are
small discontinuities along the GO shadow boundaries because double diffractions
have been neglected in this calculation.

The next pattern cut is taken by making a = 2.0 m and b = 1.414 m at a frequency
of 300 MHz. The directive gain in the y-z plane for this antenna is calculated using
the CC-UTD, the UTD and the Method of Moments and the results are shown in
Figure 33. It is clearly seen that caustics will not occur in this plane because a > V2b.
However, for this geometry a ~ v/2b which means that the diffraction point become
very close together but do not coalesce. This means that although the UTD solution is
not singular in this plane, it will predict incorrect directive gain when this occurs. This

effect can be clearly seen in Figure 33. For this geometry, the MM solution required 44
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Figure 33: Directive gain comparison in the y-z plane for a short monopole mounted
on an elliptic disk with a =2 m and b = 1.414 m at a frequency of 300 MHz.

minutes and 22.67 seconds to compute and the CC-UTD and UTD solutions required
only 1.23 seconds. It is seen from this figure that the CC-UTD and the MM are in
good agreement. It should be noted that the discontinuities along the GO shadow
boundaries are not caused by the absence of double diffraction terms, but are caused
by the breakdown of the CC-UTD. It was assumed in the derivation of the CC-
UTD that the GO shadow boundaries can not be close to the caustic boundaries.
This breakdown is not catastrophic for this case which means the caustic lit region
expressions in the CC-UTD are well behaved when this occurs.

The next pattern cut is taken by making a = 2.0 m and b = 1.415 m at a frequency
of 300 MHz. The directive gain in the y-z plane for this antenna is calculated using
the CC-UTD, the UTD and the Method of Moments and the results are shown in
Figuie 34. It is clearly seen that caustics will occur in this plane because a < +/2b.
However, for this geometry a &~ +/2b and the diffraction point coalesce on either side
of the GO shadow boundaries. The CB’s of Q. occur at ¢y, = 3.8207°, 356.1793°
and the CB’s of Q.; occur at 1cg;, = 176.1793°, 183.8207° for the dimensions chosen
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Figure 34: Directive gain comparison in the y-z plane for a short monopole mounted
on an elliptic disk with ¢ = 2 m and b = 1.415 m at a frequency of 300 MHz.

here. It is clear from Figure 34 that the breakdown of the CC-UTD is catastrophic
for this case. This means the caustic shadow region expressions in the CC-UTD are
not well behaved when this occurs.

The breakdown of the CC-UTD solution on the lit side of the caustic can be
attributed to one main fact. The product of the caustic correction transition functions
and the Fresnel transition function do not correctly account for the phenomena that
is occurring. That is, this product is incorrect when the diffraction points coalesce
near the GO shadow boundaries. This produces a non-catastrophic result because
each transition function will correct its own particular phenomena, but when these
phenomena are near, the result is slightly off. On the other hand, the caustic shadow
region expressions of the CC-UTD breakdown for two reasons. The first is the product
of the caustic correction transition functions and the Fresnel transition function do not
correctly account for the phenomena that is occurring. This is similar to the caustic
lit region. However, it was seen that the caustic shadow region field predicted by the

CC-UTD was catastrophic. This occurs because the curvature dependent diffraction
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Figure 35: Directive gain comparison in the y-z plane for a short monopole mounted
on an elliptic disk with @ = +/2 m and b = 2 m at a frequency of 300 MHz.

coefficient used in the caustic shadow region was obtained by differentiating the ITD
half-plane diffraction coefficient. This differentiation is valid only if the function is
well behaved near the point of differentiation. This is not true in this case because
we are near the GO shadow boundaries. ,

The final pattern cut is obtained by making @ = v/2 m and b = 2.0 m at a frequency
of 300 MHz. This will correspond to the other plane of both of the previous examples
since the field variation as a function of a is minimal in this plane. The directive gain
in the y-z plane for this antenna is calculated using the CC-UTD, the UTD and the
Method of Moments and the results are shown in Figure 35. It is clearly seen that
caustics will also occur in this plane because a < +/2b. The CB’s of Q4 occur at
Yoso = 120°, 240° and the CB’s of Q. occur at 1cp, = 60°, 300° for the dimensions
chosen here. These boundaries are clearly seen in Figure 35. The computer run times
for this example are the same as those of the previous example. It is seen from this

figure that the CC-UTD, the UTD and the MM are in good agreement. Again, there
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are small discontinuities along the GO shadow boundaries because double diffractions

have been neglected in this calculation.
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SECTION 7

Scattering by a Flat Plate with a
Curved Edge

The near-zone scattering by an object with a curved edge is of great importance in
many high frequency electromagnetic problems. Although the Uniform Geometrical
Theory of Diffraction gives accurate results away from the caustics of the curved
edge, it fails near and at the caustics. This chapter is devoted to the derivation
of a caustic corrected UTD solution for the near-zone diffraction by a curved edge.
This formulation is similar to that in Chapter 5 except the near-zone point is no
longer restricted to lie on the face of the plate. This results in a more general caustic

corrected UTD solution.

1 Problem Formulation

In Chapter 5, a caustic corrected UTD solution was derived for determining the field
diffracted by a curved edge. In that derivation, the source location was restricted to
lie on the face of the plate. In addition to being a useful solution in its own right,
it illustrates the basic procedures used to obtain a CC-UTD solution for this type
of problem. To generalize the applicability of the CC-UTD solution, the near-zone
point will no longer be located on the face of the plate. The basic procedure used in
Chapter 5 will be used here to obtain a CC-UTD solution for this more general case.

Two main topics must be addressed when formulating a caustic corrected UTD

solution for determining the field near the caustics of waves diffracted by curved edges.
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First, the canonical geometry must be chosen to be the simplest structure containing
the phenomena of interest. The method of solution must also be determined. This
section is a discussion of the canonical geometry and the method of solution for the
scattering by a flat plate with a curved edge.

The phenomena of interest here is the coalescence of three diffraction points.
Therefore, the canonical geometry to be used should contain no more than three
diffraction points. Although a disk is often used as a canonical geometry, it has
either two or four diffraction points depending on which region the observation point
is in. However, this geometry would unnecessarily complicate the solution because
there is one more diffraction point than is needed for studying this phenomena. This
occurs because the disk is finite in extent. The simplest geometry that contains the
phenomena of interest is. the curved edge of a semi-infinite flat plate. Once the CC-
UTD has been developed for this geometry, the solution can be applied to the disk
due to the high frequency localization property of electromagnetic fields.

It is also important to consider the mathematics involved with the geometry in
order to obtain a tractable solution. The scope of the solution is narrowed for the
purposes of this work. The procedure used to obtain a solution here can be used to
obtain a more general solution. However, to study the phenomena of interest, it is
assumed that the edge of the plate is symmetric, the source direction lies in the plane
of symmetry and the near-zone observation point is also in the plane of symmetry
of the edge of the plate. This geometry is chosen so that the diffraction points are
symmetrically located and equally spaced. A procedure similar to the one developed
here can be used to obtain a solution if the diffraction points are not equally spaced.

The ITD developed by Tiberio and Maci [15, 16, 17] will be used in this work
to obtain a caustic corrected UTD solution. The ITD contains three different com-
ponents as discussed in Section 1 of Chapter 4. The first term is a Physical Optics
surface integral. This integral can be formulated by using the spectral domain form of
the scalar free space Green’s function, interchanging the spectral and spatial integrals
and performing the spatial integrals. This results in a double spectral integral form
of the PO integral. Upon doing so, it can be seen that the PO integral contains three
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double integral stationary phase points and a branch point of order — 2, Although
it should be theoretically possible to obtain a uniform asymptotic expansion for this
type of integral, it is not possible using existing theories. Also, since the phase func-
tion would have to be mapped to a fourth order polynomial that is a function of two
variables, the canonical integral would have an extremely complicated form. In fact,
this integral would be no simpler to compute than the original PO integral. This
defeats the purpose of the asymptotic expansion. Therefore, we wish to make some
approximations in order to obtain simpler integrals.

As discussed in Section 1 of Chapter 4, the PO surface integral minus its edge
contribution is approximately the Geometrical Optics field. This approximation is
valid as long as the reflection point is not near the edge when the diffraction points
coalesce. This is the same as saying that the caustic boundaries can not be close to the
incident or reflection shadow boundaries. This will be assumed here. Therefore, the
only remaining contribution of the ITD is the diffracted field component. The total
ITD field will be approximated by the GO field and the diffracted field contribution
of the ITD integrated along the edge of the plate. The diffracted field contribution
of the ITD is derived in Chapter 4.

Only single integrals appear in this solution. The resulting formulation is simple
enough in form to allow for the uniform asymptotic expansion of the diffracted field
integral equations. The canonical integrals used in this expansion are standard and

well tabulated functions. This is an attractive feature of any asymptotic expansion.

2 Diffraction Integral Formulation

A set of integral equations must be formulated so that they can be asymptotically
expanded to obtain a caustic corrected UTD solution. The ITD will be used in this
work to obtain these diffraction integrals. This section is a derivation of the diffracted
field integral equations used to obtain a caustic corrected UTD solution.

Some assumptions must be made to obtain a usable set of diffracted field inte-
gral equations. First, as discussed in Section 1, the incident and reflection shadow

boundaries can not be close to the caustic boundaries caused by the curvature of the
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Figure 36: Scattering geometry for the diffraction by a curved edge.

edge since only the diffracted field contribution of the ITD is to be asymptotically ex-
panded here. Next, recalling that the ITD diffracted field in Chapter 4 was obtained
by asymptotically expanding a double spectral integral assuming that kr sinf@ > 1,
this must also be enforced here. Finally, it will be assumed that the curvature of the
edge is symmetric and the source direction and the observation location lie in this
plane of symmetry as discussed in Section 1. This geometry is shown in Figure 36.

" The diffraction integrals used to obtain a caustic corrected UTD solution are

determined using the ITD. The diffracted field contribution of the ITD is

E4(P) = / dE(1) (298)

where C, is the edge contour and

e—jkr

dE(1) ~ BY(Q")- {B'BD.(Q) + "9 Du(Q)} 5— di (299)

2rr
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is the electric field diffracted by an infinitesimal length of the edge of a wedge. The
half-plane diffraction coeficients given by '

e {2

2
are used since only flat plates are being considered. Also, the angle parameter a(¥¥)

is given by
UF
a(¥¥) = 2 cos? (—é——) (301)
where ¥F = 7 F 7, the distance parameter is L = rsin’8 and F[z] is the UTD
Fresnel transition function defined in (6). It will be advantageous to define the total
diffracted field as the sum of a soft polarization diffracted field and a hard polarization

diffracted field ‘
B4(P) = B(P) + B(P) (302)

where -
Ei(P) = [ dE(z.) (303)

is the soft polarization diffracted field contribution and
Ei(P) = [ dB(=.) (304)

is the hard polarization diffracted field contribution. The soft polarized incremental

diffracted electric field is

d —_ BN .A'AD I} e—jkr dl

dE,(zc) = E(Q')- BB D:(Q) 5— ( 7. dz. (305)
and the hard polarized incremental diffracted electric field is
fd — BN .S A0 e ( dl

(o) = F(Q)- 9 D@) 5 (1) o (306)

where the variable of integration is changed from arc length to the x direction. Also,

the incident field at any point on the edge is

E'(Q) = E'(0)e e (307)
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Figure 37: Polarization unit vectors for the diffraction by a curved edge.

where
E(0) = BLE}, + 9By, (308)

and the polarization unit vectors for the incident field are shown in Figure 37. It
is now necessary to write the incident ray fixed unit vectors B’ and %’ in terms of
the fixed incident unit vector directions 3 and ¢’ and the diffracted ray fixed unit
vectors 3 and % in terms of the fixed observation unit vectors 3, B. and ¥e. These
unit vectors are shown in Figure 37. The definition of the . and y. coordinates of a
point on the edge is necessary in order to determine these unit vector transformations.
The y. coordinate of a point on the edge is related to the z. coordinate by

[> o]

A2p 2p
Ye = Te
p=1 (2p)!
1 1 1 = as
= 5@ z2 + % z, + g% zo + 2 ——(21:3! z2P (309)

since the edge was assumed to be symmetric about the y-axis. The vectors 7. and
€ shown in Figure 36 can now be determined since the edge of the plate has been

defined. First, the position vector 7. is defined as

®© (9
fomga +gr= 3 T (310)
q=0 *
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where the derivatives of the position vector are taken with respect to z.. The position

vector can be written as

o = Bz} +y{ %o(Qe) 22 + 3 [R(Qe) + 3n3(Qc)]
+ = [n, V(@) + 34n§(Qc)n;’(Qc) + 45ng(Qc)] z:’}
o0 "(Q)(Qc
+ Z 2 (311)

q=7

using (724), (758) and (763) from Appendix D. The first three coefficients in (309)

a2 = #,(Q2) (312)
as = K@) +353(Q2) (313)

and
a6 = 1(Qc) + M4K7(Qe)R(Qc) + 45K3(Q0) (314)

which are found by comparing (309) and (311). It is important to note that x;'(Q.)
and k,"(Q.) are the second and fourth derivatives of the curvature with respect to

arc length, respectively. The edge vector is given by

== = | (315)

®)

from the definition of the unit edge vector and

E=-3-7 Z:e (316)

is the edge vector. The rotation of the incident ray fixed unit vectors 3’ and 12; " into
the fixed incident vectors A ! and " ! can now be performed. The incident ray fixed

unit vector 1’ is
~, €ex38! € X 8!
P = — ,C= = < (317)
smﬁ (da:_g) smﬂ’

using the definition of )’ given in (4b) of Chapter 2 and the unit edge vector definition
in (315). Decomposing the edge vector into

§=3.(2-5)+ B (-81) + 9. (¢-9) (318)
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and taking the cross product we obtain

o _ Al ____é"_'l’_b’:é_ = _é_'_ﬂ__
P '—ﬂc{ (Eﬁil_e) sinﬂl}'i"‘ﬁc{(a%) sin,B’} (319)

as ¥/ in terms of the incident wave unit vector directions. Next, the unit vector B’

is defined as

B =5 x 3" (320)
using (4d) in Chapter 2 which leads to
ar_ gl é'ﬁ:: iy 5'122
=Bl —=Fe Vgt Z¥e 321
pr=F {(;_g)sinﬂ'} i {(%)sinﬂ’} 21

as the vector B’ in terms of the incident wave unit vector directions. The decompo-
sition of the diffracted ray fixed unit vectors B and % into the fixed observation unit

vectors 3., 3. and ¥ can now be performed. The unit vector 9 is defined as

~ &xE
= 22
¥ sin (322)
using (4a) of Chapter 2. We can now write P as
7 5. (8. ¥ é‘) Te X €
g fellxf) _ Tex (323)
(E) rsin B8 (E) rsin 3
using (315) and
-~_ 8. 8. — Te
= (324)

which can be obtained from Figure 36. It is now necessary to decompose the vectors
§=5, (£-3.)+ 5. (€-Be) + % (¢ (325)

and
Fox &= 8 {8+ (Fo X )} + P {Pe- (7 x )} (326)

into their 3., 8. and 1. components. This allows us to take the cross products in (323)

to obtain

v -l Bl =




as the unit vector 17; in terms of its 3, 3. and {I;C components. Finally, the unit vector

B is

3=3x$=8c(§cx¢)—ﬁx$ (328)

T T

using the definition (4c) of Chapter 2 and & given by (324). By decomposing the

. position vector 7, as
Fe = 3c (Fe ° Ec) + Ec (7-'; * Ec) + "?;c (7-'; ° 'Z;c) (329)
we can perform the cross products in (328) to obtain
~ - 8¢ (—" Ec) ("-':: ¢ ,Bc) [“Z’\c ° ('Fe X é‘)] (Fe : Ec)
= 54— _
(df)rzsmﬁ (d‘g)'ﬂsmﬂ
T 8) (28)
( d‘f ) r2sin 8
(£-B) ac[he-(mxe) L sc (- B.) (7. - 3)
)r smﬁ (‘”)rzsmﬁ (;’i—)rzsmﬁ
[ (7 x &) (R-5)  [5- (7 x )] (7 - %) }

+ (d‘f)r’smﬁ Bl (d‘f)rzsmﬂ
Lol sﬁ(é’-{b}) sc(e-'clzc)(i';-fc)
¢ (dilc) r2sin B (fi—) r2sin B
5 - (7 x €)] (. - Bc)
+ ( dl ) 72 sin 8 } (330)

as the unit vector B in terms of its &, B. and '¢vc components.

The soft and hard incremental diffracted electric fields can now be determined
since the ray fixed unit vectors have been decomposed into the global incident and
scatter unit vector directions. The soft polarization incremental diffracted electric

field is

nd el —jkr dl
iBe) = F(@) FBDQ) e () b=
dl

+ B.{B.-[E'0)-B'B|} ( %
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P

+ "Zc {12;6 ) [E‘:(O) B/B‘]} ( dl ) Ds(Ql) gIkh(ze) dz, (331)

dz. 2rr

where

h(ze) = -8, Fe—T (332)

is the phase function of the diffraction integrals. It is important to determine the order
of the zeros of the amplitude functions to obtain the correct asymptotic expressions for
the diffracted fields. It is therefore necessary to determine the various dot products
in the unit vectors B’, 9’, B and ¢. At this point, these dot products are only
determined to find the order of the zeros of the amplitude functions because we wish

to retain the vector nature of the solution. We begin by noting that

3! = —Fcosy.—Zsiny, (333a)
B! = -z (333b)
P! = —Fsiny. + Zcos, (333c)

are the incident wave unit vectors and

3. = ¥Ycosy.+ ZsinyY, (334a)
B. = % (334b)
P = —Fsiny.+ Zcosye (334c)

are the scattered wave unit vectors. Next, using (310) and (316) we find that

- -_ dye
Te X E€E=Z (ye -z, da:e) (335)

where y. is given in (309). Therefore, the necessary dot products are found to be

g8 =1 (336a)

&P, = e sin 9, o Z. (336b)
¢ = g5, 0%

€-B. = -1 (336c)

& = ZZ: sing. o z. (336d)

T8, = yecCOSYP, x T2 (336¢)
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FooB. = e (3361)
Forthe = —Yesing o z2 (336g)
5. (F.x &) = (ye ~ 2, gi’: ) sin g, o 22 (336h)
Bo-(ox @) = (ye . %—) cos e o 2 (3361)

using (309) to determine how each quantity is proportional to () z.. Therefore,

- using (308), (321) and (330) we find that

. _.',.
o [ A5 . C(e B

3.-|E'(0)-B'B| = z.{—E;

[ ) ] i { . —ld mﬁsmﬂ'

. xz{_E:.bcsc(” ) (7. -B:) ( }

z? (—-: r2sin Bsin ﬂ’
¢ of mEE A
z3 (E) r2sin Bsin B/
_ 8¢ (é"{EC) ('Fe '12;5) (é"ﬁ::)
be z3 (%)2 72 sin Bsin B’
+ a { e x£) (-B) (¢-31)
z} (2;—) r2sin Bsin B/
B, 8¢ ( ¢c) S‘re . ¢c) (5 "I’Z) (337)
z? (3%) r2sin Bsin B/
where (336) has been used to determine the order of the zeros. Similarly, we find that

{ - 2(-8) ﬂ)}

(—4-) r2sin B sin B’
s ofon 2ERE9)
z. (F) 72 sin B sin B/
ol gy o] €5
2( )rzsmﬂsmﬂ’
8¢ (g E)(re 8c) (5'/72)}
d

z? (-d,—z—)2 r2 sin Bsin B’

A

B.- [Ei(0)-B'B]

+E},
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i e (rexe)] (7. -5.) (¢-BL)
Be
zd (Hdz_I,) 72 sin B sin B’
g e G x O (R ) (z-B2)
b zt ( ddle) r2sin Bsin B/
el ] (-B) G50} (7B
o z? ( d‘ﬂe) r2sin Bsin B’
o [ Fex @) (-5 (B 90)
z,  E,, 7
z3 (d‘i') rzsinﬁsinﬁ’
g (rexé')] 79 ( }

Ye
5 ﬂ. 2 !
z} (dre 72 sin B sin B

(338)

and

2
g.- [E¥(0)-B'B] = ze{—EEc =
= (&)

dl
= 'r2 s1nﬂsmﬁ’

A

2] _pi %

+ zc{ E:/zcz (_4_;) .,.2smﬂsmﬁ'}
)( 3c )

)Zrzsmﬁsmﬁ'

+E2c[§c (-;X )z](re ﬂc)( ﬁ )}

g B e)j & 'ﬁC) : .M)} (339)
z? (Hf_c) 2 sin B sin B’

which are found using (308), (321) and (330) in conjunction with (336) to determine

the order of the zeros. These can now be substituted into (303) and (331) and

integrated. It is important to note that the terms that are proportioﬁal to odd

powers of z. will integrate to zero. Therefore, the soft polarized diffracted field is

E{P) = 5.{T}(P)+Ii(P)} + B {J3(P) + T;(P)}
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+ P {K3(P) + Ki(P)} (340)

where the soft polarized diffraction integrals are

I(P) = —E.b—%—)— [ a2 Az e, (341)
.1 7 : ) S
Ti(P) = ~Eig- [ ot Ai(e.) i, (342)
Js(P) = -Ej i (e-2 2)7r( / Bi(z.) (=) dz, (343)
Ji(P) = E;,c-(f;—f-g ]oxiﬁ’(:c ) e?*hlEe) 4, (344)
. 82 Veo—m.. .
K3(P) = ~Ej5: [ #20i(er) M da, (345)
K:(P) = E,,,El;r— /°° z? Ci(z.) e*%) de, (346)
and
-~ 7-'; * Bc €- 12;2 5 !
Ax(ze) = ( lg( ) (d‘i—’) 3 s(jﬂ) sin #/ (347)
By = P Cx2) (7A€ 9) 4@
z, (dI ) 73 sin Bsin B’
(8- 9) (7-4) (F-91)  Bu(@)
+ z? ( £ ) 73 sin B sin A/ (349)
ns _ E (Q)
Bo(ze) = (df )"‘3 smﬁsmﬁ' (349)
_ o e x @)@ -5 D,(Q")
Bj(z.) = z (%) 3 sin B sin B/
B GxEE) Do)
z} (7‘%’—) r3sin B sin B/
_35{[¢c (1‘3 X e)] - (é’ Bc) ('Fe Ec)}
+ =

5@ | .
X (dil,) r3sin Bsin B’ (350)
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(%) (F-9:)  Du@)

Ci(ze) = z? (df ) r3sin B sin B/ (351)
Grioy = =EFNEB(EI) Di@)
a\Te zd (dd—:‘) 73 sin B sin B’
.- (" x ) B) (%)  Dyu@) (352)
zl (‘“ ) r3 sin Bsin B’

are the amplitude functions of these diffraction integrals. This same procedure is
now used to determine the hard polarized diffracted field. The hard polarization
incremental diffracted electric field is given by

nd ”i T I} e~k ( dl
Bz = B(Q) -39 Du@)° ( )dze

2nr \dz.
= 5{5 [E(0)-$'%]} ( d ) D;fg) &bz g,
+ B.{B. [E(0)-4'3]} (‘” ) D;fr?) (R g,
b 3 (099} (4) 22 ) s, (359)

where h(z.) is the phase function of the diffraction integrals as given in (332). There-
fore, using (308), (319) and (327) we find that

i (B39 = {—E"C[EC (7 x 2)) (- B) }

v z? (%’;) rsin Bsin B’
B (Fox &) (e-PL
¢ atlp B x5 (354)
z2 (d—f:) rsin B sin f'
where (336) has been used to determine the order of the zeros. Similarly, we find that

.- [B©)- 9] = {E (29 (2-7) }

ve Te (d‘i——lc)zrsinﬂsinﬂ’

+ z:{—Ez; 5°((€"f°) (€99 } (355)

2 ;%) rsin B sin '

and

5. [F0)-#9) = {—E:;,c ((ﬁ ) (-7 }

EZ) rsin @ sin B
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. 28{E,. s (¢-B.) (¢-92) }

8 2, ]
“Ze (3%’-) rsin B sin B’

+ze{ [ (7. x 2)] (- B )}

¢ z2 (d‘i) rsin B sin B’

+ zS{E [ - (7. x &)] (5"7’2)}

o :c3(‘") rsin Bsin B/

(356)

which are found using (308), (319) and (327) in conjunction with (336) to determine
the order of the zeros. These can now be substituted into (304) and (353) and

integrated. It is important to note that the terms that are proportional to odd

powers of z. will integrate to zero. Therefore, the hard polarized diffracted field is

EY(P) = 5. T}(P) + B. J}(P) + % {K4(P) + K}(P)}

where the hard polarized diffraction integrals are

ﬁW)=—%ﬁ;Qj¢£@mmwae
JHP) = —Eﬂcz _ngég(:ce)e"""(")dze

Kh(P) = —E-fbcsc (é’-ﬁ;)w(é‘-ﬁé) /w Gh(z,) (=) da,
KiP) = —Ef,,c%f—é) 7 22 Cl(z,) =) dg,

-—00

and

[8c - (Fe x €))] Dw(Q")
z? (d )rzsmﬂsmﬂ’

sy - EPIET) D)

Zg(ze) =

= x2 (%’e) r2sin Bsin B’
o Du@)
Co(ze) = (a_ij:) 2 sin B sin B/
srey - P xO] D)
Ci(ze) = z? ( £ ) 72 sin Bsin B’
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are the amplitude functions of these diffraction integrals. The soft and hard polar-
ized diffracted field integral equations must be asymptotically reduced on the lit and

shadow sides of the caustic in order to obtain a caustic corrected UTD solution.

3 The Uniform Asymptotic Expansion of the Diffracted
" Field Integral Equations in the Caustic Lit Re-
gion

Although the diffracted field integral equations derived in Section 2 can be numerically
integrated to predict the field diffracted by a curved edge, it is advantageous to obtain
closed form expressions. One way to accomplish this is to asymptotically expand the
integrals at high frequencies. This section is devoted to the asymptotic expansion of
the diffracted field integral equations for the lit side of the caustic.

In the caustic lit region, there are assumed to be three symmetrically located
diffraction points as shown in Figure 38. This occurs because of the assumed symme-
try of the edge, source direction and observation location. The uniform asymptotic
expansion derived in Section 2 of Appendix B can be utilized when these diffraction
points are nearly coincident with these assumptions in mind.

As explained in Section 1 of Appendix B, if an integral has three real stationary
phase points then g = —n where p = sgn {h"V(z.)} and 5 = sgn{h"(z.)}. It is
also easily shown using (753a) and (764a) of Appendix D that the value of the phase
function is

h(z.) = —s. (366)

at the central stationary phase point and using (756a) and (7652) of Appendix D that
the value of the phase function is

h(znc) = _32 : Fe(an) — 8pc (367)

at the non-central stationary phase points. The argument of the transition functions

becomes

§= l\/gk['"?é : "-;;(Qrw) — 8pc + 3::] g~ J3nr/4 (368)
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Figure 38: Caustic lit region diffracted ray geometry for the scattering by a flat plate
with a curved edge.
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using these in (626) in Appendix B and the fact that p = —7. Also, from (753c)
and (764c) of Appendix D the second derivative of the phase function is

h(es) = — Ll n ;,—(lé—)] (369)

at the central stationary phase point and

n = sgn {h"(z.)} = —sgn {Sc [pfzf(f)c)-l- sc]} (370)

is the value of 7. From (756c) and (765c) of Appendix D the second derivative of the

phase function is

2
) 1 1 dl
B () = — sin? B [;; + F,‘@:)‘] (dze . ) (371)

at the non-central stationary phase points. The only remaining quantities to be

determined are the values of the amplitude functions of the integrals evaluated at the
central and non-central stationary phase points.

The first six derivatives of y. are required in order to evaluate the amplitude
functions of the diffraction integrals at the central stationary phase point. This
is accomplished by differentiating the Taylor series form of y. given in (309) and

evaluating them at z. = . = 0 to obtain

Yelp, = 0 (372a)

dye

di o 0 (372b)

d*y.

da::IZ = az = 5y(Qc) (372¢)
€ 1Qc

&y,

|, (372d)

d4ye I 3

dz* = as = £5(Qc) + 3rg(Qc) (372€)
€ 1Qc

d*y.

dz} |y =0 (372f)

dsy‘ v 2 1 5

dzb = G = Ky (QC)+34K‘Q(QC)K’g (QC)+45ng(QC) (372g)
€ 1Q.
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which are also the coefficients of each term in the series using the definition of the

Taylor series. Next, the common factor

- D,(Q'
Fe) = a7 @) __ (373)
E) r3sin Bsin B
can be observed in the amplitude functions of the soft polarization diffraction integrals

of (347) through (352). This can be evaluated at the central stationary phase point

as

Fie) = 55 D@ (374)
using (767a), (7762) and (779a) of Appendix D. The remaining portions of the am-
plitude functions are found by substituting (336) into (347) through (352) and taking
the limit as z. — 0. This results in

Be) = 7orsDiQ) (375)
Ae) = —{pg(Qc)cozch;(zsinwc}sin# 5.0 (376)
Bi(z.) = ;%E(CZC) (377)
Biay - - [£5(Qc) + 3fzg§§c)] =59 5 0, (378)
Ci(z.) = Ei—g;gg—jéﬁ(%) (379)
Grz) = —tpe(Qe) —;;c;»(éccjgsiwcsiwg 5.(0) (350)

where repeated use of ’Hépital’s rule and (372) have been used to determine these
lmits. Similarly, the common factor
. (D!
e (381)
(Bx_) r2sin Bsin B/
can be observed in the amplitude functions of the hard polarization diffraction inte-

grals of (362) through (365). This can be evaluated at the central stationary phase

Fi(ze) =

point as

|

Fi(ze) = = Du(Q.) (382)

8

onN
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using (767a), (776a) and (779a) of Appendix D. The remaining portions of the am-
plitude functions are found by substituting (336) into (362) through (365) and taking
the limit as . — 0. This results in

— sin ¢,

Ab(z.) = th@c) (383)
Biw) = "o D@ (384)
Chtze) = = Da(Q0) (385)
Ol = Fomries Di(@) (386)

where repeated use of ’'Hépital’s rule and (372) have been used to determine these
limits. Next, the amplitude functions of the soft and hard polarization diffraction
integrals can be evaluated at the non-central diffraction points. A result that is

useful in simplifying these expressions is

_ €(Qnc)
€(Qne) = (387)
(&)

dl
dz.

from (315) which is the unit edge vector evaluated at the non-central stationary phase
points. Therefore, the amplitude functions of the soft polarization diffraction integrals
of (347) through (352) are

[r.,(Qm)s-z ﬂ:]in[: éiM) 5] B.(00) (388)
o [2(@ne) - % E:(g;:)éf] @) 5 o
[P Fe(@ue) X (@)} [7(Qn) - B [£(Qn) - 9

=2
83, sin® B,

zf:c ‘Z;(zﬂc)

sz EZ(“’M) =

D,(Qn)  (389)
1

Bi(en) = D,(Qne) (390)
(],.) ssin? bu
ot Br(on) = L0 Q) XEQuN} (eQu) 3] 5

3 cin?
83 sin” B,

+ 8 ({"Z;c . [ﬂ(an) X E(an)]} - [a(an) * Bc] ["_"e(an) . Ec])

)
83 sin® By,

D\(Qnc)
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— {3 - [7e(Qne) X (Qne)]} [Fo(Qnc) - %]

t 83_sin® B
z:c é;(znc) _ [e (an)s;l)cs:!n[:;inc) . ¢ c] b’a(an) (392)
8¢ [e (an) g 'd’c] E’:;e(s?::‘)B‘r:c] [e (an) * ¢ C] Ea(an)
{8 - [7(Qne) X €(Qne)]} [Fe(Qnc) - Be] [€(Qnc) - 9]

)
83, sin” B,

D(Qne) (391)

mfw 6’48(:”"0) =

+ D,(Qc) (393)

at the non-central stationary phase points and the amplitude functions of the hard

polarization diffraction integrals of (362) through (365) are

ot Ben) = L0 P @l 50 (394)
~ e an "‘7;1: e an ";é i~

Zpe By (2nc) = ¢ )32 s]m[: ém )9 Di(Qne) (395)
ég(‘ch) L Eh(an) (396)

(&],.) sz sin? buc
o Ghon) {Be - [7u(@nc) X E(Quc)] B (0n) 390

2 oin2
82 sin® B,

at the non-central stationary phase points. This completes the derivation of the
quantities required to obtain uniform asymptotic expressions for the diffracted field
on the lit side of the caustic. It is now necessary to substitute these quantities into
the uniform asymptotic expansion derived in Section 2 of Appendix B and simplify
the result to obtain a standard ray optical form.

The uniform asymptotic expansions of the soft and hard polarized diffraction inte-
grals can now be performed since all the necessary quantities have been determined.

To make the uniform asymptotic expansions easier to simplify we can recognize that

ejmr/4 B \J pd(Qc) e—j1r/4 (398)

JhrGel N Q) + o

at the central stationary phase point and

e—Jnm/4 8nc pd( an) /4
= 4 399
\/Ihn(mﬂC)l (d‘i—lz an) sin ﬂncJ Snc [pd(an) + ‘snc] ¢ ( )
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at the non-central stationary phase points. The diffraction coefficients and caustic
distances at @}, and Q. are equal because of the assumed symmetry of the geometry.
Therefore, D,h(@nc) = Dop(Qn) = Dop(Qrc) and p4(Qnc) = p*(QL) = p!(QR.)
will be used for the remainder of this chapter. We begin here by determining the
uniform asymptotic expansions of the soft polarization diffraction integrals of (341)
through (346). It is assumed here that the function Aj(z.) is a smooth and slowly
varying function of z. near the stationary phase points and k > 1. This allows us to
use the uniform asymptotic expansion (657) of Appendix B. Therefore, the uniform

asymptotic expansion of (341) is

~ 8 ~ i 8c 7
5. I;(P) ~ 3cE¢52_7rA2("’c)

\/2_,1- elnm/4
k3/2 \/l'h“(zc)l

_§c 2E:bc 8¢ [E(Z:rc) . ﬁc] {23‘6‘25(1:"0)} \/ékE

e—inw/4 .
X e’k"(““)Tmf 2
{ |h“(zm)|} (&m2)

~ B {5 (22 b}

Pd(Qc) 3 —jksec
" { PQ:) + sA} °
—38c [E(an) ° ﬁc] [Fe(an) ¢ Ec]

T
s2_sin B,

XTnc(£7 n, 2) } J pd(QRC) e—jks’“

3
} ejkh(x‘)Tc(f, 2)

+ E'(Q:c) ) {—Blgc ( ) Ds(an)

8nc [Pd(an) + 3nc]
—8c [E(an) ‘ ﬁc] [ﬁ:(an) : Ec]

82, sin B

+ E(Qn)- {—B’ 3 ( ) D,(@nc)

X Te(€,7,2) }J [,,528,2,3 )+ o R (400)

where (375), (388), (398) and (399) have been used to simplify the result. It is now
assumed that the function A3(z.) is a smooth and slowly varying function of z, near
the stationary phase points and k > 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (342)
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is

5
= T8 S ) jkh(z.
S Ti(P) ~ —8.Ey 5—Ai(s) } eMH(E=IT (¢, 4)

k52 IR (=)

. ; 1 . 21!' e Jfl ‘Eh(z
—SczEt/Jc M {3 A (znc)} V { h“ }ejkh( nc)Tnc(£77]14)

E,‘,-(Qc) ] {"i[;, 5, (" c {Py(QC) cos . + 8 sin ¢c} sin ¢é)

3V2r { einr/4

~ 2%203(Q.)
Pd(Qc) o2 —jkac
DI { e )
R G e
_3c[ (an) ¢c] [Te(an) "pc]
. sin B
P(@ne) —jksne
DelQue el }\J 500 1PH(Qne) + 8]
+ Bon). { ( {%.- [re(czm); esfﬁ";)]} [7(@ne) - B
—38c [E(an) * {ﬁc] [Fe(an) : 1/’c])
+ 82_sin By,

XD,(QHC) Tn0(£,0’4) }\‘ Sne [pgz(QQn:)C)"l" 3nc] e_jka"c (401)

where (376), (389), (398) and (399) have been used to simplify the result. It is now
assumed that the function B(z.) is a smooth and slowly varying function of z. near
the stationary phase points and k > 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (343)

1s

= ~ . 8 ~ /21r einw/4 -
i@c JOS(P) ~ ﬁc E;i 8_cBé(zc) Ea {_"'“' e]kh(zc)Tc(fa 0)
2w k /lh“(zc)l

85 [a(an) * ﬁC] [g(an) : B

39 ] s 27r
—ﬂc 2 Eﬁc 211_ Bo( nc)
—inw/4 )
X — eth(IM) Tﬂc(f’ 7, 0)
Ih “(zﬂc)l
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p4(Qc) g ikse
8¢ [Pd(Qc) + sc]

—s? e nc) * Ac
-+ El(Q:c) * {—B’Bc ( 868[2 iflﬂ) B]) Da(an)

XTnc(€5n,0) }J P*(Qnc) g ikone

~ E'(Qc) ' {"B’ BcDa(Qc)Tc(fao)} \]

S8ne [Pd(an) + 3nc]
+ E(Qr) { ~B B ( £ [2(@n). ])D(Qm)

2
82, sin fp.

XTM(é,n’ 0) }J Snc [pﬁ((i(QQn:;)'*' 3n¢] e‘—jhm (402)

where (377), (390), (398) and (399) have been used to simplify the result. It is now

assumed that the function BJ(z.) is a smooth and slowly varying function of z. near
the stationary phase points and k >> 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (344)

is

372 jnr/4
i) ~ BB S {Jlin(z )

= i €(@nc) - B = 27
—5:2 Eﬂc[——'z—,;—“]‘ o HER RTE
—jnm/4 .
» { e } eth(xnc) Tnc(f,"l,4)

5
} eHHEIT(¢,4)

|R™(@nc)|
~ E(QJ)- { BB (38 S E,;(QC)” (Q°)])p,(czc)
Q) 7 i
xTd64) }{ d(Q)+3c]} ©
+ E,(Q ) { ({1/% [’l'e(an) :zes(lf’; ]} Te(an) 86]

+ 5 ({{5‘: ) [ﬁ:(an) X E(Q"C)]} - [ (an) * ﬁc] [‘Fe(an) . §c])

82_sin By,

—{z- [Te(Qrw) Xe (an)]} [Fe(an) : ";c]

82_sin By,

) Ds(an)
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d .
XTnc(€sm,4) }\) -~ [pﬁ(g‘i:; )+ o] g~ Fkne

+ BQo)- { -B'B. ({%  [Fe(@nc) :2 C s(lf,gjc]} [7(@ne) - 5]

Lo ({Be + (@ne) X E(Quell} = [6(Qne) - B] [2(@ne) - 3)
sic sin By
4 - {gc ¢ [Fe(an) X E(an)]} [ﬁ:(an) : ‘Jc]

2 .
82, sin By,

XTnC(f’n,4) }J 8nc [p’;Z(QQr:;)'{“ Bnc] e_jksm (403)

where (378), (391), (398) and (399) have been used to simplify the result. It is now

) D,(Qne)

assumed that the function 6’; (z¢) is a smooth and slowly varying function of z. near
the stationary phase points and k > 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (345)

is

> o s A2m | eI/
$K3(P) ~ —f By 52 05(ac) {

27
k3/2 \/lh"(zc)l
7 £ 83 2 A 27
Bt LA O] TR

~jnrf4 .
X e - Tkh(zne) Toe(é,7,2)
|h™ (2 nc)]

. e jstsin.siny!
~ B {-93 (FEELY) p ) 1e, )

PR oAk }3/2 e

3
} ejkh(h)Tc(f, 2)

—s2|e nc) * Ac
+ E"(Q:c ) {—B,{EC ( c.g[: (SiQnﬂ)nc¢ ]) Da(an)
d .
S
. A ~ [ 3 3 nc '$c
+ E’(Q;c) - {—ﬂ'Tﬁc ( ’ 8[: (siﬂ)m ]) Ds(QnC)
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XToc(£,7,2) N [pf,’zgzg) e (404)

where (379), (392), (398) and (399) have been used to simplify the result. It is now
assumed that the function C’;(ze) is a smooth and slowly varying function of z. near
the stationary phase points and k > 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (346)

1s

~ ~ 1o 32| e/t
Ki(P) ~ 9B, 5-Cilz) { |

5
kh(zc)
k5/2 eI } € T.(¢,4)

+P.2 B}, 2% {22.Ci(zne)} \/%
e i/t jkh(znc)
N T (€ Tnellomi4)
{ | (2nc)| }
. — 2 _ . . ,
~ E(Q.)- {—¢'¢c (3sc {ps(Q:) 2;:;(55&3} sin 1. sin ¢c)

D760 i }5/2 e

s

G Q) 2@l @) .ﬂC]) o)

Pd(QnC) —iksnc
XTnC(£’ > 4) }J Snc [Pd(an) + an] ©
- o s e e
18- e(@ne)  E(Que)l} [7e(Qe) - B

82_sin B,

o) }\j Snc [pzzéan:;)+ P e - (405)

where (380), (393), (398) and (399) have been used to simplify the result. Next, it is

) Da(an)

necessary to determine the uniform asymptotic expansions of the hard polarization

diffraction integrals of (358) through (361). It is assumed here that the function
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.Zl-g(ze) is a smooth and slowly varying function of z, near the stationary phase points
and k > 1. This allows us to use the uniform asymptotic expansion (657) of Ap-
pendix B. Therefore, the uniform asymptotic expansion of (358) is

. 3
~ 7h = 1h V2 eI/ jkh(zc)
5.1,(P) 8¢ E¢c A 2(2c) 1372 {\/Ih“(:c ) ¢’ T.(¢,2)

-8 2E:}’c [E(Q;’Z : ﬁ - {mrzzczg(mnc)} \/—%

e—Jnm/4 Jikh(ane)
X { ———— Fre) Toc(é,m, 2
{ |hn(zm)|} A6m:2)

~ F(QJ)- { )5 (2";:‘:1(22))Dh(Qc)Tc(f,Z)}

g {sc [pf(ig& sc]} " A

. Fob. { s ( .- [re(czm)xe(czm)]}) Du(@.)

8nc sin B,

X Tnc(£7 75 2) } J P [Pg((QQn:;)‘{' Bm] e_jke""

R ) Da(@ue)

8 sin B

) |\ e 9

where (383), (394), (398) and (399) have been used to simplify the result. It is now
assumed that the function B2(z,) is a smooth and slowly varying function of z. near
the stationary phase points and k > 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (359)
is

- s 12
(P) ~ “ﬂcEﬁ eor ( )\k/sz/—z{—l—iﬂ} ejkh(z‘)Tc(€12)

_B.2 Eﬂ 22 B} (2nc)} \/5?

—jnw/4 .
% e e]kh(znc) TM( E, 7, 2)
|h ™ (@nc)|
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where (384), (395), (398) and (399) have been used to simplify the result. It is now
assumed that the function C~’{,‘(me) is a smooth and slowly varying function of z. near
the stationary phase points and k > 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (360)

is

77;0 K:g(P) ~

=y | _aa (J8isingesing;
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c P (an) + 3nc]
where (385), (396), (398) and (399) have been used to simplify the result. It is now

XTnc(f,q,O) }J - [ 5¢(Qn¢:) e~ Ikane (408)

assumed that the function C}(z.) is a smooth and slowly varying function of z, near
the stationary phase points and k >> 1. This allows us to use the uniform asymptotic
expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (361)

is

- \V2or eInm/4
K3(P) ~ —9.E: C"
¢ 2( ) ¢ ¢¢2 ( ) k3/2 { lhu(z )I

3 E%[ (an). {2 ) \/27
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Spc sin Bp.
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8nc Sin ﬂnc

X Tnc(€, "112) }\' P [Pgt(iéQn:)C)_}_ 8m] g Ikene (409)

where (386), (397), (398) and (399) have been used to simplify the result. This

3
} I 2)

) Dh(an)

+ E‘t(Qr_;c) : {—JI'QZC ( ) Dh(an)

completes the uniform asymptotic expansion of the diffracted field integral equations
on the lit side of the caustic. However, it is advantageous to rewrite these results in
a more convenient and standard form. Therefore, adding (400) through (409) and

regrouping the terms we obtain

Pd(Qc) g—ikac

E{(P) ~ F(@Q)-D'(Q) \, 5 [PQ) + o
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pd(QC) }3/2 e-—jkac
Pd(QC) + 5]
Pd(Qc) }5/2 ks
Pd(QC) + 5]
p(@nc) e Tkene
Sne [Pd(an) + 3nc]

+ E"(Qc) %f(Qc) {3c [

+ 509 5@ {

+ E(QL) -fb(cz:c)\

+ E‘(Q;c) . fL(Qr_zc)l\ o [pg(i(QQn:;)_}_ snc] g~ Ikene (410)

which is in a dyadic form similar to the UTD. The first three terms of this expression
represent the field diffracted by the central diffraction point and the dyadic diffraction

coeflicients are
D7(Q.) = ~B" B Do(Q2) Te(£,0) — %' B Du(Q0) Tel£,0) (a11)

!

&)

ﬁ)

%f(Qc) _ (scs1n¢

e A RXCRLITE

782 sin 1, sin 9,
kp3(Qc)

&)
€~)

) D.(QJ)T(£:2)

(2;‘;?:‘(‘52 )) Di(Q) T(6,2)
782 sin 9. sin 9.

( o)
8. cos Y,
(2-7k pPe(Qc)

@)
r»)

) Dh(Qc) Tc(£7 2)

) Dh(Qc) Tc(£1 2) (412)

and

,(Q) = -9 (_383 {po(Qc)cosy + acsin’ g} siny;

2k2 (Qc) ) Da(Qc) Tc(£’4)

"B ﬁc (38 - (Q )—- i [:kz(QC) * 3 (Q )]) Da(Qc) Tc(£,4)
PO 333 {pg(Qc) — 8. COS '¢c} sin 9. sin ¢.’;
Vv ( 2253(Q.) )
xD,(Qc) Te(¢,4) (413)

where D, ,(Q.) are the UTD half-plane diffraction coefficients and T.(¢,m) are the
caustic correction transition functions given by (655) of Appendix B. Also, the last
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two terms of (410) correspond to the two non-central diffraction points. The dyadic

diffraction coefficient for these terms is

D (Qne) = —B' Bu(€) Do(@ne) = B Fu(€) Da(Qre) (414)

where D, 1(Qn) are the UTD half-plane diffraction coefficients. Also, the uniform
polarization vectors B,(¢) and ¥,(¢) are given by
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T
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82 sin B,
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1ZC { — [E(QnC) - ﬁC] Tﬂc(£7 77!0)

8 sin B
, 2P @) x 2(Qne)}

8pe sin PBye

Tne(&5m, 2)} ; (416)

respectively, where T,.(£,m,m) are the caustic correction transition functions given
by (656) of Appendix B. These uniform polarization vectors are used because the
variation of the caustic correction transition functions prevents us from recombining

the components of the typical B and 4 polarization vectors. However, in this form

Jm Bu(¢) =5 (417)
and
dm V() =9 (418)

which means that the uniform polarization vectors reduce to the standard polarization
unit vectors away from the caustics and are modified near the caustics to obtain the

proper field value.

4 The Uniform Asymptotic Expansion of the Diffracted
Field Integral Equations in the Caustic Shadow
Region

The field in the caustic shadow region must also be determined in order to obtain a
uniform asymptotic expression for the diffraction by a curved edge. This asymptotic
expansion must be performed in a way that is consistent with the expansion on the
lit side in order to obtain a uniform result. This section is devoted to the asymptotic
expansion of the diffracted field integral equations for the shadow side of the caustic.

It is assumed that only one diffraction point exists in the caustic shadow region as
shown in Figure 39. This occurs because the two non-central diffraction points have
coalesced and disappeared. The uniform asymptotic expansion derived in Section 3
of Appendix B can be utilized with these assumptions in mind.

As explained in Section 1 of Appendix B, if an integral has one real stationary

phase point and two complex conjugate stationary phase points then g = 7 where g =
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Figure 39: Ray geometry for the diffraction by a curved edge in the caustic shadow
region.
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sgn {h™(z.)} and 7 = sgn {h"(z.)}. It is also easily shown using (753a) and (764a)
of Appendix D that the value of the phase function is

h(z.) = —sc | (419)

at the central stationary phase point and using (756a) and (765a) of Appendix D that
the value of the phase function is

h(@ne) = =3¢+ Fe(Qnc) — 8nc (420)

at the non-central stationary phase points. The argument of the transition functions

becomes

j\f Dk[—5. - 7o(Qre) — 8me + 2] | €774 (421)

using these in (626) in Appendix B and the fact that p = 7. Also, from (753c)

and (764c) of Appendix D the second derivative of the phase function is

A ) 422)

at the central stationary phase point and

7 = sgn{h"(zc)} = —sgn {sc [Pdp(é?)c)_l_ Sc]} (423)

is the value of 7. The values of the amplitude functions of the diffraction integrals
where determined in Section 3 and are found in (375) through (380) for the soft
polarization diffraction integrals and (383) through (386) for the hard polarization
diffraction integrals. The only remaining quantities to be determined are the values
of the the second derivatives of the amplitude functions of the integrals with respect
to z. evaluated at the central stationary phase point.

It is now necessary to determine the second derivatives of the amplitude functions
of the diffraction integrals with respect to z.. These derivatives will be divided into
different elements in order to use the chain rule. First, the values of the vector

products in (336) evaluated at the central stationary phase point is

-~
= !

< = Ky(Qc)sine, (4242)

Ze lq.
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¥l = ky(Q.)sine,
Ze lq.
Te + 8, 1
7 o =3 kqe(Q:) cos ¥,
'Fe ¢ 'J;c 1 .
2 |, = —§NAQJﬂm%
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27 . = -3 Kqo(Q.) sin 9,
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e - (7o x &) = (¢ Be) (7. - 5.)
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= — 35 [RQ:) +33(Q)] cos e

(424b)
(424c)
(424d)
(424e)

(424f)

(424g)

where ’Hopital’s rule and (372) have been used to determine these values. It is also

necessary to determine the second derivatives of these quantities with respect to z..

Differentiating twice with respect to z. we obtain

&2 (e 1
da? {e_;é'} o 3 [ 2(Qc) + 363(Qc)] sin .
& (& -9 1 . _
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& [Pe- (7 x &) .
ZE { z2 } .. = -3 [ng (Qc)+ 3ng(Qc)] cos Y.

Q-
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where the Taylor series form of y. of (309) is used to determine the series form of the

function to be differentiated. The common factor

ES(Q’) _ 5'!(Q')

2o = My pinpanp ~ PAQ@)

where

P(Q) = (d‘ile) r3sin Bsin B’

is now differentiated twice with respect to z. to obtain
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for the soft polarization integrals. Also, the common factor
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where

Pu(Q) = (d‘il ) r?sin Bsin B

is now differentiated twice with respect to z. to obtain
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8 c
where

Pi(Qe) = K5(Qc) {2 (sin® ! — cos® ) + p2(Q.)}

(426)

(427)

(428)

(429)

(430)

(431)

(432)

(433)

for the hard polarization integrals. The amplitude functions of the soft polarization

integrals of (347) through (352) are now differentiated twice with respect to z. to
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& 43(Qc)
dr2

A43(Q)

dl?

4’ B3(Q-)
drz

& B;(Qe)

dl?

CHQ.)

di?

2*Ci(Qc)

di?

—e~im/4 B2 A%(z,)

Verk  dzl |,
[£2(Qc) + 353(Q.)] sin .

353 D,(Qc)
+ £g(Qc) sin P, F,'(Qc) (434a)
—e~I7/4 dzf‘i;(ze)
V2rk  dz? 0.

—5 c) cos . + 5 sin® 9,
{pg(Ql)ngpg(Q_t) ) [£2(Qc) + 353(Q.)]
x sin 9! D,(Q.)
~{Ps(Qc) cos . + s sin® 4.} sin ¢,
i 7@

=F(Q.) (434c)
Q.

F(Q:)  (434b)

—e~I7/4 2 B3(z,)
V2rk dz?
—e~i"/* &2 B3(z.)
V2rk dz? 0.

[£2(Qc) + 34K2(Q:)xF(Q.) + 45x3(Qc)]

9057 cos Y. D,(Q.)

4 ~ral@9) [5(Q0) + 355(Q0)] sin’ ¥

3
633

o 200 + 365(Q) coshe

~363(Q.)sin’ %} F2(Q.) (1544)

—e~iv/t 2C3(z,)
V2rk  del |,

2r4(Qc) ["';I(Qc) + SEZ(QC)]

D,(Q:)

383 DG(QC)
+ £2(Q.) sin . sin ¥, F(Q.) (434e)
—e—in/4 dzéj(ze)
v 27rk dzz Q.

2r3(@ feeooste = 2@ [ + 383000

x sin 9. sin ¥, D,(Q.)
+ %ng(Qc) {sc cosppc — pg(Qc)}
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x sin 9. sin P F,'(Qc) (434f)

at the central stationary phase point where F*(Q.) is given in (428) and (429),
D,(Q.) is the soft polarization UTD half-plane diffraction coefficient and ﬁ%‘-ggﬁl is
given by (812) through (818) of Appendix D. The amplitude functions of the hard
polarization integrals of (362) through (365) are now differentiated twice with respect

to z. to obtain

PAEQ.) _ —eTiT IAY(z.)

dre Vork  da? |,

_ ks,

2
4s?

— 2Ro(Qc)sin e FF(Q.) (435a)
&EBQ.) _ —e it £Bj(z.)
dre Verk  de? |,
255(Qc) [53(Qc) + 363(Q.)] D@
- 3s2 ¢
+ K2(Qc) sin . sin ¥, F(Qc) (435D)
#CHQ. —e~37/4 220k (z. .
£CHQ.) _  —e It &0)(a.)

—_——

daz T mk  dzz |,

_ - [ng (Qc) + 3ng(Qc)] cos ¢c Dh(QC)

2
45?2

~ 5 Ra(Qc) s e F(Q0) (4350)

Qe

at the central stationary phase point where F,(Q.) is given in (432) and (433),
Dy(Q.) is the hard polarization UTD half-plane diffraction coefficient and f-%%@ is
given by (812) through (818) of Appendix D. This completes the derivation of the
quantities required to obtain uniform asymptotic expressions for the diffracted field on
the shadow side of the caustic. It is now necessary to substitute these quantities into
the uniform asymptotic expansion derived in Section 3 of Appendix B and simplifying
the result to obtain a standard ray optical form.
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The uniform asymptotic expansions of the soft and hard polarized diffraction inte-
grals can now be performed since all the necessary quantities have been determined.
To make the uniform asymptotic expansions easier to simplify we can recognize that

einr/4 _ 80\[ P4(Q.) " (436)
lh1(z.)| s [p(Qc) + 5]
at the central stationary phase point. We begin here by determining the uni-

form asymptotic expansions of the soft polarization diffraction integrals of (341)
through (346). It is assumed here that the function Aj(z.) is a smooth and slowly
varying function of z. near the stationary phase point and k > 1. This allows us to
use the uniform asymptotic expansion (673) of Appendix B. Therefore, the uniform

asymptotic expansion of (341) is

o \/_ einm/4
5. I;(P) ~ scE¢c 2( )k3/2 \/lhn(z )
sc 3v2r | e/t
21 2k5/2 \/lhu(z )]

42 A3z, 2 A?
X { _d_:l!(z—_) + ﬁ [c(lc) - 4ng(Q_c)] Az(“’c)}

~ F(Q.)- {— s, ("s:?g’c))D(Qc)T(&?)}

S o] }3/2 e

. —~3s8 d2A3(Q.) —5s3 siny!
+ E(Q.)- { ( TR TR 8k%py(Qc)

} eI T(¢,2)

+5. By, oo

5
} ejkh(:cc) Ta(f, 4)

x [Ct) - 4r%(Qe)] D,(Qc)) T,(6,4)}

Pd(Qc) 52 —~jksc
8 {3c [PH(Qc) + 3C]} ) (437)

where (375), (434) and (436) have been used to simplify the result. Also, the function

C(l.) is given by
3lkRE(L)]  A™(l)

=" ~wmw) %)
where
myo | Lo L
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is the second derivative of the phase function given by (753c) of Appendix D and

RY(L) = [n;i(Qc) - NZ(QC)] [cos 9. + cos ] + Kg.(fC)
30, & cos P, 2
* 83 [1 Po(Qc) ] (440)

is the fourth derivative of the phase function given by (753¢) of Appendix D. It is now
assumed that the function A3(z.) is a smooth and slowly varying function of z. near
the stationary phase point and k 3> 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (342)

is

—~ 3 ~ ‘ 1 ~S 3V 277 ejn"/4
5.I{(P) ~ —3.Ey -2—7rA4(:cc) {

5
ekh(ze) T (¢ 4
k5/2 \Ahn(zc)l} (f )
7
o 1 15/2x | eI/t bz
d‘zzi(“’e) 7 2 As
X { = + 5 [e(k) - 462(Q.)] As(=.)

. o —3352 { po(Q.) cos Y. + s.sin’ . sin 3]
E (Qc) - {"'¢ Sc ( { - 2k2Pg(Qc) } )

e

. ~.. (1587 d?A%(Q.
+ EY(Qc)- {"¢'3c (2:’;; ;1(2Q )
335s3 {pg(Qc) cos P, + s sin’ 1,bc} sin 7/
i 168°73(Q2)

X [C(lc) - 453(Qc)] Ds(Qc)) Ta(&sﬁ)}

Pd(Qc) i —jkse
X { (@) +sc]} ¢ (441)

where (376), (434) and (436) have been used to simplify the result. It is now assumed

that the function Bj(z.) is a smooth and slowly varying function of z. near the
stationary phase point and k£ > 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (343)
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= = i 8% = 2 | eI/ ;
ﬂc j(;(P) ~ ﬂc E;i S_CB(')(ZC) \/: {_——'— ejkh(zc) Ta(fv 0)
¢ 2w k /IR (z.)|

3
~ . 82 jnw/4 .
+,3c E};c 8. 2T {\/e } e;kh(xc) Tg(f,z)

21 2k3/2 |hu(z,)]

o { fﬁg(ze)

2
dz?

Q+ et - (@) Esm)}

- b (Fanieinio) [ G

.. o 5 d233 . 2
+ E’(Qc) . {_ﬁlﬂc (2‘;ck ;I(ZQ ) + sjck

x [e(le) - 453(Qc)] D,(Qc)) T.(£,2)}

Pd(Qc) 3/ —jkae
X { [pd(czc)+sc]} ¢ (442)

where (377), (434) and (436) have been used to simplify the result. It is now assumed

that the function B:(z.) is a smooth and slowly varying function of z. near the
stationary phase point and k > 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (344)

is

5
5 5o Log, (3V/2m | e/ kh(z
:BC J4 (P) ~ ﬂc Eﬁc %B‘!(zc) k5/2 {\/Ihll(zc)l } eth( c) T,(f, 4)

7
~ 1 15/2n [ e/t ikh(z<)
+ﬁc Eﬂc o0 2%k7/2 { Ihn(zc)l} e’ Ts(ga 6)

2
dz?

x {% + 2 [e) - 4x2(Q0)] EZ(zc)}
Q.

. o [ 382K2(Qc) — 82 [k 1(Qc) + 363(Q.
~ E,(Qc)_{_ﬂ,ﬂc( (@) [4k2(Q)+ (Q)])

xD,(Q2) To(¢,4) }{3 [pfzc(z?)cl _ }5’ g

. ~~ (15587 &2B2(Q.
+ B(Q.)- { ~ BB ( si% £5iG.)
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3552 {3s262(Q.) — 82 [s3Qc) + 3r3(Q.)] }
+ 96753

X [C(lc) - 4"‘:(QC)] DG(QC)) Ta(£’6)}

Pd(Qc) i e~ dkae
x { [p"(Qc)Hc]} (443)

where (378), (434) and (436) have been used to simplify the result. It is now assumed

that the function C3(z.) is a smooth and slowly varying function of z. near the
stationary phase point and k 3> 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (345)

is

2 \/5.; { ejmr/4

3
‘J;Cx:;(P) ~ ¢C Et/J: C ( ) k3/2 |hn(z )l} e?h(=e) Ta(£,2)

_.E 82 321 | e/t
22 21r 2Kk5/2 \ﬂh”(zc)l

2 [et) - 4@ 5;(%)}

i 1 B jsgSin¢c5in¢<’:
~ B(Q)-{- 94 (M55Y) .0y me )

Pd(Qc) 32 —jksc
X { 5 P%(Qc) + ] } °
3s7 d?C3(Q.) = 5sinycsinp]

* E'(Q°){ a2 (21;'3 FERN PRI (08)

x [e(t) - 4x2(Q.)] D,(Qc)) T.(£,4)}

I CANER e
g { 9@ + sc]} ° (444)

where (379), (434) and (436) have been used to simplify the result. It is now assumed

5
} ejkh(zc) Tg(f, 4)

#2C3(z.)
"{ di(g

that the function C’Z(ze) is a smooth and slowly varying function of z. near the
stationary phase point and k 3> 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (346)
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is

3v2r /4
BKUP) ~ 9., —-Ciz.) ’:f; {\/e’

5
} gIkh(ze) T’(e, 4)

|2 (zc)|
7
~ 1 153 [ e .
cE’ kh(z”)Ta 6
+9 ¢°27l' 2%7/2 { lhn(zc)|} e’ (67 )
7

y {f%ﬁ = [€(t) - 42(Q.)] 52(%)}

= ~~ (352 {pg(Qc) — 8¢ cos .} sin 1. sin 1)
N E(Qc)_{_¢¢c( {p(Q)zmpg(c;/:)} ¥ ¢)

T

- . 87 d*C2(Q.
+. E’(QC) ' {“¢'¢c (1;:36 dl(zQ )

35.54 {p4(Q.) — 8. cos 1.} sin 9. sin 9’
165k°p3(Qc)

x [C(k) - 45%(Q.)] D.(Qc)) T.(£,6)}

T CANER
8 {sc [Pd(QC) + 3C]} © (445)

where (380), (434) and (436) have been used to simplify the result. Next, it is neces-

sary to determine the uniform asymptotic expansions of the hard polarization diffrac-
tion integrals of (358) through (361). It is assumed here that the function A%(z.)
is a smooth and slowly varying function of z. near the stationary phase point and
k > 1. This allows us to use the uniform asymptotic expansion (657) of Appendix B.
Therefore, the uniform asymptotic expansion of (358) is
Vor ein=/4
ke/2 {\/Ih“(z )
5
-3 E:}’c EI,F 3;2/52/—: { \/;"J:(/‘l’c)l} et (ze) T.(¢,4)

= [ew) - 4s2(Q.)] Zs(zc)}

3.I}(P) ~ —3.E), 21 Ab(z,)

3
} ejkh(zc) Ta(&a 2)

8 { d?Ah(z.)

2
dz?

~ E(Q.)- {— s (;;jg“(g‘))uh(oc)n(e,z)}
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Pd(QC) }3/2 —jksc
* {sc [p#(Qc) + 5c] °
. ~.. (385 d?ARQ.) —15s2 sinv.
+ EQ)- {‘¢ & (2k2 dE T Ep,(Q.)
x [C(l) - 4s2(Q.)] D;.(Qc)) T,(£,4)}

d 5/2
4 (Qc) } —jks
X e 7% 446
Bk (o)
where (383), (435) and (436) have been used to simplify the result. It is now assumed

that the function Eé‘(ze) is a smooth and slowly varying function of z. near the
stationary phase point and k > 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (359)

is
. ‘/'_ einr/4
. JHP) ~ —B.E B" —_—
ﬂ J ( ) B ﬁc 2( ) k3/2 { Ihn(zc)l

; B¢ 3/2r einm/4
Es. 21 2k5/2 lh“(zc)l
_ 2Bi(z.)

o S _a3 382 sin 9. sin 1,
~ F (Qc) { ﬁ,Bc ( kPg(Qc) ) Dh(Qc) Ta(fﬁz)}

e }m e

: = (32 &BF(Qc) , bsi singsiny]
+ E(Qc){ ﬂc(w ;p + 3272(Q.)

X [C(lc) -_ 4NZ(QC)] Dh(Qc)) Ta(£,4)}

Pd(Qc) o2 —jksc
Awiara) - 40

where (384), (435) and (436) have been used to simplify the result. It is now assumed

3
} HEIT(E2)

5
Ec } ejkh(zc) Ta(f) 4)

that the function CP(z.) is 2 smooth and slowly varying function of z. near the
stationary phase point and k¥ > 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (360)
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is

- einm/4
$K3(P) ~ $Ej 0 )‘/— { hn(m } e T,(¢,0)

3 \/2_.,1- ednr/4
21 2k3/2 \/lh“(zc)l

S _
o {fﬁdi(z_el % [c@.) - 4x2(Q.)] Gé‘(zc)}

Qe

~ E(Q.)- {~¥'%. Da(Q.) T’(E’O)}\J [ %?)Cl - o—ikee

. st 2CH(0. 2
+ E’(Qc)-{ ¢’¢c( < (’:ﬂ(zQ)+ &k

x [C() - 482(Qc)] Dh(Qc)) T,(£,2)}
X{ P(Q.) ]}3’” (448)

sc [pH(Qc) + 5c
where (385), (435) and (436) have been used to simplify the result. It is now assumed
that the function C’(z.) is a smooth and slowly varying function of z. near the
stationary phase point and k > 1. This allows us to use the uniform asymptotic
expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (361)

is

. 3
7 yh T o 1 =, Var e /4 ikh(zc)
"pc ’C2 (P) '¢’C Eibc 2 C2 (ZC) k3/2 \/Ih H(zc)l e’ Ts(E’ 2)

7 1 3v2r einm/4
¢V o 245/ IR (z,)|
9 42Ch(z.)
dz?

5
} e T, (¢,4)

+ 15—2 [c(t) - 4x5(Q2)] 5'5’(%)}

~ BQ)-{-7%. (2;;;333;))mm(e,z)}
T COIR
"{sc[pd(czc)wc]} )
335 2CHQ.) = —58cosy.

+ E"(Qc)'{_%zc (Z_kE dE T 16Rp,(Q.)
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x [C(L) - 4r2(Q)] Dh(Qc)) T.(£,4)}

Pd(Qc) o2 —jkac
x { 7Q.) + 3,,.]} ‘ (449)

where (386), (435) and (436) have been used to simplify the result. This completes

the uniform asymptotic expansion of the diffracted field integral equations on the
shadow side of the caustic. However, it is advantageous to rewrite these results in
a more convenient and standard form. Therefore, adding (437) through (449) and

regrouping the terms we obtain

B(p) ~ E'"(Qc)-fs(Qc)\J PAQe) it

sc [p#(Qc) + sc]
d 3/2
+ E’(Qc) ﬁ‘lg(Qz:) {sc [Pﬁ((QQc;)'{' 3c]} g Ikse

-—b = d 5/2 .
v 5(Q) 5@ { o) ™
+ E'(Qc) ﬁ:(Qc) {Sc [pf;((QQc)C)_*. 36]} e~ ksc (450)

which is the caustic shadow region diffracted field in a standard dyadic form. The
dyadic diffraction coefficient appearing in the first term of (450) is given by

D (Qc) = —B' B Do(Q:) Tu(£,0) — B B Du(Q:) To(£,0) (451)

and corresponds to the UTD dyadic diffraction coefficient multiplied by the caustic
correction transition function T,(£,0) which can be found in (674) of Appendix B.
The last three terms in (450) correspond to curvature dependant components of the

diffracted field and their dyadic diffraction coefficients are given by

8. 8in 9.

ﬁf(QC) = "{EIA (Jkpg Qc)) (Qc) 8(672)

(]3 sin . sin ¥,
kp(Qc)

(2;1;1:(3 ) Di(Q:) Tu(4,2)
s

j82sin . sin !
kPg(Qc ) Dh(Qc) Ta(E; 2)
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) D.Q)T.(6:2)




'3 (————“’—) Dh(Q2)Tu(&,2)

2jkpg(Qc)
oo [ 82 dPB3(Q.) &2
_al Sc 0 c c
b (2jk az T gk

x [C(l) — 4s2(Qc)] D,(Qc)) T.(¢,2)

4 h 2
P A 8¢ d200(QC) S¢
vy (2jk T gk

x [C(k) — 4r2(Qc)] Dh(Qc)) T,(§,2),  (452)

— - —352 4 pg(Qc) cos P, + s sin® 9, t sin 3.
D,(Q.) = —¢'3c( Lo )2k2pg(Qc) } )D’(Q°)T’(£’4)

o~ o~ 33 3 c] — g 9[1 c +3 3 c
’ﬁc( (@) -2 [Zkz(m %9 )]) D(Q)T.(6:4)
T T 333 {py(Qc) — 8, COS "/Jc} sin ¢c sin ’Qb,':
—¥ P 2H3(Q:)
~.. [—3s8 d?A5(Q.) —5s2 siny!
v ( e dE Tt Rp(Q.)

9

) D.(Q.)T.(6,4)

x [C(l) - 4s2(Q)] D,(Qc)) T.(¢,4)

N 333 dzCZJ(Qc) 5 sin 7). sin 9,
—¥e (2k2 ar " BRs2(Q.)

X [c(lc) - 45:(Qc)] D:(Qc)) T,(é,‘i)

35 3s% L2AKQ.) N —15s2 sin 9,
Pe\2k? a2 48k2p,(Q.)

x o) - 43(Q)] PA(@0) T(e. 8

_B‘IB 3_35 dng(Qc) 532 sin 9. sin ¢,
\2r —a 8k272(Q.)

x [e(t) - 452(Q.) D;,(Qc)) T.(64)

_ 3% 3s3 d°C3(Qc) | —5s3cosye
‘\2k2 dI? 16k2p,(Q.)

x o) - 4] @) e ()
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and

15SZ dzAz(Qc) n j3533 {PQ(QC) cos P + 8¢ sin’ 1pe} sin 1,
27k3 di? 16k3pg(Qc)

x €0 - #6(02] Du(@0) 6.0
s (153'83 &*Bj(Q.)

Di(Q) = “‘Z'@(

—BB 2k3 d2

35s2 {3sfn§(Qc) — 83 [ng“(Qc) - 3n§(Qc)]}
+ 96; 53

x [e() - 4@ D.(Qc)) T.(¢,6)

53 15js{ d°C3(Qc) | 355 {po(Qc) — sccos g} sin e sin g,
VYo are 165k%p3(Q.)

X [C(lc) - 4N§(Qc)] Da(Qc)) Ta(és 6) (454)

where D, ;(Q.) are the UTD half-plane diffraction coefficients, C(l.) is given in (438)
through (440) and the second derivatives of the amplitude functions are given in (434)
and (435). Also, the caustic correction transition functions T,(¢,k) are defined
in (674) of Appendix B. This completes the uniform asymptotic expansion of the
diffracted field integral equations for the shadow side of the caustic.

5 Useful Approximate Field Expressions

Although the diffracted field expressions derived in Sections 3 and 4 are written
in terms of simple functions, they may seem complicated at first. Therefore, some
simple approximations can be helpful in reducing these expressions to something
more practical. This section is a discussion of two approximations that can be used
to simplify the calculation of the diffracted field expressions.

The first approximation deals simply with the shape of the edge. This approxi-
mation will change only the central diffracted field expressions since only the central
diffracted field contains explicit information about the shape of the edge. The edge
of the plate was first assumed to be in the form of a power series as given in (309).

Although this is theoretically precise, this series can be approximated by only the
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leading term. This is due to the fact that the central diffracted field is dependant on
the local geometry near the diffraction point. Therefore, the diffracted field expres-

sions can be approximated by making
ag = K, (Qc) + 3ng(Qc) =0 (455)

and

a6 = K" (Qc) + 34r5(Qc)ry'(Qc) + 4555(Qc) = 0 (456)

which is the same as saying x;'(Q.) ~ —3£3(Q.) and £)V(Q.) ~ 57x3(Q.). These
turn out to be excellent approximations as will be shown in the next chapter when
the expressions derived in this chapter are calculated.

The second approximation deals with the nature of the diffracted field integral
equations. Although the diffracted field expressions derived in Sections 3 and 4 are all
required to obtain a completely uniform caustic corrected UTD solution that reduces
to the UTD away from the caustic, only two main contributions are required to
obtain a good approximation of the field. The integrals in Section 2 containing zeros
will produce only non-central diffracted field components to a first order asymptotic
approximation. Although the zeros need to be accounted for in order to obtain
a uniform asymptotic expansion of these integrals, their contribution to the total
diffracted field is small compared to the integrals that dé not contain zeros. Therefore,
the total diffracted field can be approximated by

E%(P)~ B.J{(P) + %Kk P) (457)

where J3(P) and K{(P) are the only two integrals that do not contain zeros. It is
important to note that these are the two integrals that compensate for the disconti-
nuities of the GO fields. These integrals have been asymptotically reduced on the lit
side of the caustic in Section 3 and can be written as

P4(Qc) e—ikec
s [p%(Qc) + 5]

Pd(an) g—Fksne
8nc [pH(Qnc) + 8nd

BY(P) ~ E(Q)-D () J

+ E(QrL) -#(Q:c)\J
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+ F(QL) -fL(Q;)J . [ch(lg,?,:;)qL ™ g~ dkonc (458)

where

=L -~ -~ -~

D (Qc) = —B'B: Do(Qc) Te(£,0) — %P Du(Qc) Te(§,0) (459)
is the dyadic diffraction coefficient for the central diffracted field and

ﬁL(an) - "ﬁ ’ﬁu(f) Da(an) - 12;,‘1-;14(6) Dh(an) (460)

is the dyadic diffraction coefficient for the non-central diffracted fields. Also, the

uniform polarization vectors B,(¢) and ¥,,(¢) are

— 2i2s . 3
ﬁu(e)zﬁc{ [(iﬂ)ﬁ ] T,,c(s,n,m} (461)

and -~ R
6(6)~ 7 {‘[(Qﬂ”’ L gten 0)}, (462)

respectively. It is clear that these expressions do not reduce to the standard UTD
ray fixed polarization unit vectors B and 9. It should be noted that 3 Tp..(£,7,0) and
% Toc(€,7,0) can not be used in the place of ﬁu(f) and \fi.,(ﬁ); respectively, because
the result will no longer be uniform. These integrals have also been asymptotically

reduced on the shadow side of the caustic in Section 4 and can be written as

BY(P) ~ E"‘(Qc)-fs(czc)\J PQ) .

Sc [Pd(QC) + 3C]
i 5 P(Qc) v jks.
v B(0) 5(@) {5} e (463)
where
D' (Qc) = —B'B: Do(Q) Tu(£,0) — $ P Da(Q:) Tu(£;, 0) (464)
is the dyadic diffraction coefficient for the central diffracted field and
=S ara 32' hid 8<2:
Q) ~ -P% (55 7@+ 45

x [€(l) - 4x%(Qx)] D.(Qc)) T,(¢2)
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4
8

- ¢'¢c (m‘ fhu(Qc) +

s
85k

[0 - 453(@0] Pu(@)) Tie D) (s69)

is the dyadic diffraction coefficient for the curvature dependant central diffracted field.
This turns out to be good approximation as will be shown in the next chapter when

the expressions derived in this chapter are calculated.
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SECTION 8

Numerical Calculation of the
Field Scattered by a Plane Wave
Incident on a Flat Plate with a
Curved Edge

It is important to numerically confirm that the caustic corrected UTD (CC-UTD)
solution derived in Chapter 7 is accurate. To do so, two geometries are considered
in this chapter. First, the scattering by a flat plate with a curved edge defined by
a parabolic equation is determined. This CC-UTD solution is then compared to the
classical UTD solution. The other geometry considered is the scattering by an elliptic
disk. The CC-UTD solution is compared to the classical UTD solution and a Moment
Method (MM) solution. This chapter is devoted to the numerical confirmation of the
CC-UTD solution of Chapter 7.

1 Scattering a Flat Plate with an Edge Defined
by a Parabolic Equation

The first geometry to be studied is the scattering by a flat plate with an edge defined
by a parabolic equation. To conform to the assumptions of the derivation of the
CC-UTD in Chapter 7 it is important that the plane wave propagates in the plane
of symmetry of the parabolic edge. Also, the near-zone observation point must be in
the plane of symmetry of the parabolic edge. This geometry is shown in Figure 40.
This section consists of two parts. First, the parameters required for the CC-UTD
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Figure 40: Geometry for the scattering by a flat plate with a curved edge defined by
a parabolic equation.
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and the UTD solutions are determined. Next, the scattered field is calculated and

compared.

1.1 Parabolic Edge Scattered Field Parameters

In order to determine the geometric parameters required for the use of the CC-UTD

and the UTD, the edge of the plate will be defined as
z? = day. (466)

where a is the focal length of the parabola. First, the diffraction points can be deter-
mined by enforcing the fact that cos 8 = cos#’. In doing so, the central diffraction

point is found to be located at

Ye =0 (467)

and the non-central diffraction points are found to be located at

Yo+ Ecy/s2 —y2 cotyp,  ;ifsZ—yl>0
Ync = (468)

Yo — jecrfy2 — 82 cotyp, ;if sl —y> <0
where y, = 3. cos?. — 2a, €. = sgn {sin9_} and the observation distance s is fixed.
Using this result it is easy to determine the caustic lit and caustic shadow regions.
If ync > 0 the observation point is in the caustic lit region and if y,. < 0 the obser-
vation point is in the caustic shadow region. Also, the distance from the non-central

diffraction points to the observation point is

8. = Ync — Yo
nc — .
cos !

(469)

The next quantities needed are the curvature and the second and fourth derivatives

of the curvature at the diffraction points. The curvature of the edge is defined as [33]

k(O = Iyé'
(@) Tr WP (470)

where using (466) it is easy to show that

, 1 a 3/2
k(@) =5, (a +ye) (471)
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for a point on the parabolic edge. Next, evaluating (471) at the central and non-

central diffraction points we obtain

5o(Q:) = 5 (412)
and 32
1 a
ng(an) = :2';' (a T y,,c) , (473)

respectively. Also, differentiating (471) four times with respect to z., evaluating them
at the central diffraction point and using (758) and (763) of Appendix D to convert

these derivatives we obtain

kg (Qc) = —3k(Qc) = (474)

(2 )3
as the second derivative and

57
(20

as the fourth derivative of the curvature with respect to arc length. It is now necessary

ke (Qc) = 57r3(Qc) = (475)

to determine the diffraction angles 9 and B at each of the diffraction points. The
values of 9 and 7’ at the central diffraction point are 9. and 9, respectively. Also,
the oblique incidence angles at the central diffraction point are 5. = B, = 5. The

angle 1 is found using

2a (8. cos Y. + Ync) (476)
8pe SID B,,c\/ (2a)? + 4ayn.

€08 P =

and the angle 9’ is found using

2a cos 9.
sin ﬂm\/ (2a)? + 4ayn.

at the non-central diffraction points. The angle 8, = . at the non-central diffrac-

cosy,. = (477)

tion points is

. 2 1y
in B, = J%ﬁfi (478)

-

using cos B,; = cos ). = 5. - €. Next, it is important to determine the distance to

the second caustic of the central and non-central diffraction points. To do so, we
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recall (10) from Chapter 2 to find

—2a
Q) = 479
(@) cos . + cos P! (479)
as the caustic distance at the central diffraction point, and
P2 (@nc) = — (%> 8nc sin® Bnc (480)
a

as the second caustic distance at the non-central diffraction points. Also noting that

3:: 'ﬁz(an) = — Ync COS '4’2, (481)

we are able to determine the argument of the caustic correction transition functions.
Finally, it is necessary to determine the Geometrical Optics (GO) field and the inci-
dent field at each of the diffraction points. The incident field at the observation point
is .

E'(P)={B.Ej +$,E}} et Ulr — [y — %] (482)
which is determined using classical GO techniques. The incident wave polarization
vectors B’ and %/ must be transformed into the global polarization unit vectors &,

BC and {b} as shown in Figure 41. Using the coordinate transformation

-~

B, = -5 (483)
é gc Sin(“)[’c - ¢é) + ‘$c c°5(¢c - 'lj:;) (484)

€
il

it is found that
E(P) = {5.E} sin(d—¥.) — B. B}, + Pe By, cos(b. — 1)}
x ek b=V U fr — [ghe — 9] (485)

is the incident field at the observation point. Next, the reflected field at the observa-

tion point is
E'(P) = {B. Ej.R, + $, B}, R} Ot U r — g + 4] (486)

where the reflection coefficients are R, 5, = F1. The reflected wave polarization vectors

B, and 7, must be transformed into the global polarization unit vectors 3, B. and 7).
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Figure 41: Polarization unit vector definition for the Geometrical Optics fields in the
presence of a flat plate with a curved edge defined by a parabolic equation.
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as shown in Figure 41. Using the coordinate transformation

- Bc (487)
P = Besin(te+¥L) + Pecos(de + 97) (488)

®
It

it is found that

E"(P) = {5.E sin(¢+9))+B. Ep, + 9 E, cos(ye + ¥}
xeiteecs bt U — [ghe + ] (489)

is the reflected field at the observation point. The GO field at the observation point
is the sum of the incident field and the reflected field at the observation point. The
diffracted field can now be determined using the diffraction parameters found previ-
ously.

The incident field at each diffraction point and polarization vectors are required

to determine the diffracted field on the lit side of the caustic. The incident field is
B(Q)=P.E, +3 B, (490)
at the central diffraction point and
E(Qne) = {BLE}, + D! Bl Jeftvmecote (491)

at the non-central diffraction points. It is now necessary to rotate the incident ray
fixed polarization unit vectors B’ and %' into the global incident polarization unit
vectors B,’; and 12;; The incident wave ray fixed polarization unit vectors at the central
diffraction point are B’ = ﬁ", and P’ = ‘;Zé The incident wave ray fixed polarization

unit vectors at the non-central diffraction points are

o 2a ~ Ty SID ¢é
- 492
=P { sin ﬁ,,c\/(72a)2 + dayy,, } Y { sin ﬁ,,c\/ (2a)? + 4ayn. } (492)

and

~

T a7 — Zne sin 'lbé -~ 2a
= 93
V=~ { sin ﬂnc\/ (2a2)% + 4ayn. } G { sin Bnc \/ (2a)? + 4ayn. } (493)
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Figure 42: Polarization unit vector definition for the diffraction by a curved edge
defined by a parabolic equation.

in terms of the global incident wave polarization unit vectors ﬁé and 1;; as shown
in Figure 42. Also, the modified diffracted ray fixed polarization vectors ﬁu(f) and
@,(¢) as given by (415) and (416) of Chapter 7 are

20 8. Tnc Tnc(€,7,2) + (2a cos P + 8¢ 5in® ¥.) Zne Yne Tnc(€, 7, 4)

ﬁu 6 = g‘"
( ) { sfw sin ﬂnc\/ (20:)2 + 4aync }
~ | 2a 82 Tnc(f,'f],O) - 2ay,2,c Tnc(é‘an? 4)
+ B
82_sin ﬂ,,c\/ (2a)? + 4ayn.
3 -8z, sin . Tne(€,7,2)
‘ 8%, sin Bncy/(2a)? + 4ayn.
n (3.: cos P, — 2a) T Yne SiN Y. Tnc(fa n, 4) (494)
872:c sin ,Bnc\/(2a:)2 + 4a'ync

and
q'}u (6) — Ec 20' %’nc sin ¢c Tnc(f: 7, 2) + "c 8¢ z.nc s1n ¢c Tnc(fﬁ 7, 2)
8nc §iD Bncy/(2a)? + dayn. 8nc Sin Brey/(2a)? + 4ayn.
+ {[;c 2a s, Tnc(g,na 0) + 2a Yy, cos ¢'cTnc(£7n) 2) . (495)
Spc SID ﬂnc\/ (22)? + 4ay,.
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respectively, in terms of the global polarization unit vectors 3., B. and 1zc as shown

in Figure 42. The argument of the caustic correction transition functions is

£ = ‘\/2k[ym COS !, — 8ne + &) | €7H37/4 (496)

from (368) and 7 given in (370) of Chapter 7. These vectors and the diffraction
parameters derived earlier are now used in (410) through (414) of Chapter 7 along
with the UTD half-plane diffraction coefficients to determine the diffracted field on
the lit side of the caustic. ’

The diffracted field in the caustic shadow region can be computed using (450)
through (454) of Chapter 7. The diffracted field parameters required in order to use
this result have been derived previously in this chapter. The only quantity left is the

argument of the caustic correction transition functions

E= l\ﬁ).k[ync cos Y’ — 8pc + sc) g=inmm/4 (497)

from (421) and 7 given in (423) of Chapter 7. It is important to note that it is
possible for {ync cos Y. — 8nc + 8.} to be complex in the caustic shadow region. Al-
though this case should be analyzed using uniform steepest descent techniques, it is
treated here heuristically. The caustic correction transition functions are not critical
when this occurs because it is usually in the deep caustic shadow region. Therefore,
| Y COS Y. — 8pc + 8¢ | can be used because it will produce a transition function argu-
ment that is piece-wise continuous in magnitude. The ramifications of this approxi-
mation will be discussed in the next subsection when these expressions are calculated
numerically. There is no reason to transform the polarization vectors since those used
in Chapter 7 are also used here. Therefore, the GO field and the diffracted field add
to produce the total field.

1.2 Numerical Calculation of the Field Scattered by a Flat
Plate with a Parabolic Edge

The numerical calculation of the field expressions derived in Subsection 1.1 confirms

the uniformity of the CC-UTD. This also leads to some insight into the physical
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phenomenology involved in this problem and the CC-UTD formulation. The CC-UTD
formulation is compared to the classical UTD solution to illustrate their differences.
This subsection is devoted to the numerical calculation of the total field in the presence
of a flat plate with a parabolic edge.

Various components of the total field are plotted in this subsection in order to
discuss the properties of the CC-UTD solution. The quantity to be plotted throughout

this subsection for a ﬁé polarized incident plane wave is

Eg (dB) = 20log,,

B.-E(P)| (498)

for the Bc component of the field at the observation point. The CC-UTD does not
produce any cross polarization for this incident wave polarization. This is due to the
assumed symmetry of the edge, incidence direction and observation location. Also,
E(P) is the component of the electric field being discussed. Next, the quantities to

be plotted throughout this subsection for a @ polarized incident plane wave are

E, (dB) = 20log,,

5. E(P)| (499)
for the 3. component and

E'[; (dB) = 20 loglo

$.-E(P)| (500)

for the 7, component of the field at the observation point. However, the CC-UTD
does not produce a B, component for this incident wave polarization. This is due to
the assumed symmetry of the edge, incidence direction and observation location.

The first case considered here consists of a flat plate with a parabolic edge having
a focal length of a = 3, an observation distance of s, = 5 and an incidence angle of
. = 45° as shown in Figure 40. The different components of the CC-UTD solution
will first be plotted to illustrate some of the properties of the formulation. Only
the J7(P) will be separated into its different components since all of the remaining
integrals will have the same characteristics.

For the sake of discussion, the central ray diffracted field is the first term in (402)
of Chapter 7 when P is in the caustic lit region or the first term of (442) of Chapter 7
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when P is in the caustic shadow region. These terms are labeled this way because
they are the same except the caustic correction transition functions differ on the lit
and shadow sides of the caustic. The non-central ray diffracted field is the sum of
the last two terms in (402) of Chapter 7 in the caustic lit region. Finally, the curva-
ture dependant central ray diffracted field is the second term in (442) of Chapter 7.
Although this diffracted field has a similar form as the central ray diffracted field,
it has a different curvature dependant diffraction coefficient and a different caustic
correction transition function.

We now look at the central ray, curvature dependant central ray and non-central
ray diffracted field components of J?(P) as shown in Figure 43. As explained earlier,
this is obtained by making the incident wave purely ﬁé polarized. Several interesting
facts about the CC-UTD can be seen from this plot.

The Incident Shadow Boundary (ISB) is located at 3. = 7 + %, = 225° and
the Reflection Shadow Boundary (RSB) is located at 9. = 7 — %, = 135° for a flat
plate with a parabolic edge with a focal length of a = 3], an observation distance of
s. = 5) and an incidence angle of ¥/, = 45°. The Caustic Boundaries (CB) occur when
the amplitude spreading factor of the diffracted field expressions becomes singular.
Therefore, equating p%(Q.) + s to zero we find that

cos YPep = {2;04 — cos 1/1;} (501)

c

are the locations of the CB’s. The CB’s are located at 9z = 60.47°, 299.53° for the
dimensions chosen here. These values are shown in Figure 43. It is also easy to see
how the solutions on the lit and shadow sides of the caustic differ. The central ray
and curvature dependant central ray diffracted fields are each bounded in the caustic
shadow region. In this region, the curvature dependant central ray diffracted field
can be viewed as a correction to the central ray diffracted field. However, the central
ray and non-central ray diffracted field contributions are each singular in the caustic
Iit region. The central ray diffracted field contribution has a singularity that opposes
the singularity of the non-central ray diffracted field. These singularities cancel and

169




Central Ray Diffracted Field
—————— Curvature Dependant Central
Ray Diffracted Field
————— Non-Central Ray Diffracted Field

Caustic Caustic Caustic
Lit Shadow Lit
Region Region Region
E— it} Bl -t
CB RSB ISB CB

(P) (dB)

T

8
0

0 90 180 270 360
Y. (Degrees)

Figure 43: Diffracted field components of J?(P) for a plate with a focal length of
a = 3A, an observation distance of s = 5) and an incidence angle of ¥, = 45°.
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Figure 44: Field components in the B. direction for a plate with a focal length of
a = 3), an observation distance of s. = 51 and an incidence angle of 9, = 45°.

the proper field is obtained in the caustic lit region when these two contributions are
added to obtain the total diffracted field.

As discussed af the end of Subsection 1.1, {yn. cos P, — 8pc + 8.} in the arguments
of the caustic correction transition functions may become complex in the caustic
shadow region. The angles for which this occurs are

cos e = {Z_a - 1} (502)

Sc

by making s2 — y2 = 0. These points are 1y = 78.4630° and 281.5370° for this
geometry and can be seen in Figure 43. It is seen from Figure 43 that this has a
negligible effect for the central ray diffracted field but not for the curvature dependant
central ray diffracted field. However, the sum of these two field components shows
little effect from this anomaly. The field in the caustic shadow region is piece-wise
continuous as discussed in the previous subsection.

We can now look at the incident, reflected and total diffracted fields for the B.

component as shown in Figure 44. These quantities are obtained by making the
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Figure 45: Total field comparison in the B, direction for a plate with a focal length
of a = 3], an observation distance of s, = 5) and an incidence angle of 9 = 45°.

incident wave purely E,’: polarized. This figure clearly shows that the diffracted field
is not only bounded near the caustic, but it is also smooth and continuous. Therefore,
the CC-UTD is uniform across the caustics of the diffracted field. It is also clear that
the diffracted field retains discontinuities along the incident and reflection shadow
boundaries. Also, as explained earlier, there is a negligible effect of the approximation
used in the argument of the caustic correction transition functions on the shadow side
of the caustic.

Finally, Figure 45 shows a comparison between the CC-UTD and UTD solutions.
Adding the incident, reflected and diffracted fields; we see that the total field is
smooth and continuous everywhere. This figure shows that the CC-UTD solution
corrects for the caustics of the UTD solution. It also shows that the CC-UTD solution
smoothly reduces to the UTD solution away from the caustics. This is one of the
requirements of a uniform solution. It is clear that the CC-UTD solution retains
the proper discontinuities along the incident and reflection shadow boundaries to

compensate for the discontinuities of the GO fields.
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Figure 46: Field components in the 3, direction for a plate with a focal length of
a = 3), an observation distance of s, = 5) and an incidence angle of 9, = 45°.

We can now look at the incident, reflected and total diffracted fields for the 3,
polarization as shown in Figure 46 and the %, polarization as shown in Figure 47.
These field quantities are obtained by making the incident wave purely {52 polarized.
These figures clearly show that the diffracted field is not only bounded near the caus-
tic, but it is also smooth and continuous. Therefore, the CC-UTD is uniform across
the caustics of the diffracted field. It is also clear that the diffracted field in the 12;c
direction retains discontinuities along the incident and reflection shadow boundaries
as expected. As explained earlier, there is a negligible effect of the approximation
used in the argument of the caustic correction transition functions on the shadow side
of the caustic.

Finally, Figures 48 and 49 show a comparison between the CC-UTD and UTD
solutions for the 3, and 7, components, respectively. Adding the incident, reflected
and diffracted fields; we see that the total field is smooth and continuous everywhere.
These figures show that the CC-UTD solution corrects for the caustics of the UTD
solution. It also shows that the CC-UTD solution smoothly reduces to the UTD
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Figure 47: Field components in the 9, direction for a plate with a focal length of
a = 3], an observation distance of s, = 5\ and an incidence angle of 9, = 45°.

10 |

OWAMMA L\

AL
Ml N

Es (dB)
g

. CC-UTD
-30 | -====- UTD

_50'...,.,...,.,4\, \

0 90 180 270 360
Y. (Degrees)

NG '

Figure 48: Total field comparison in the 3, direction for a plate with a focal length
of a = 3], an observation distance of s, = 5\ and an incidence angle of ¥, = 45°.
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Figure 49: Total field comparison in the . direction for a plate with a focal length
of @ = 3), an observation distance of s, = 5) and an incidence angle of ¥, = 45°.

solution away from the caustics. This is one of the requirements of a uniform solution.
Although these patterns are continuous everywhere, the 5. component is discontinuous
in slope along the incident and reflection shadow boundaries. This occurs because
the slope diffraction terms where neglected in the asymptotic expansion of the ITD
diffracted field of Chapter 4. This is generally a small effect that is usually neglected.
This line of thinking is consistent with the UTD.

As another example, the total field is calculated for a plate with a focal length
of a = 4), an observation distance of s, = 8) and an incidence angle of ¢, = 30°.
Figure 50 shows a comparison between the B. components of the CC-UTD and UTD
solutions which is obtained by making the incident wave ﬁ; polarized. We see that the
total field is smooth and continuous everywhere. This figure shows that the CC-UTD
solution corrects for the caustics of the UTD solution. It also shows that the CC-UTD
solution smoothly reduces to the UTD solution away from the caustics. It is clear
that the CC-UTD solution retains the proper discontinuities along the incident and

reflection shadow boundaries to compensate for the discontinuities of the GO fields.
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Figure 50: Total field comparison in the 3, direction for a plate with a focal length
of a = 4], an observation distance of s, = 8 and an incidence angle of 7/ = 30°.

Figures 51 and 52 show a comparison between the CC-UTD and UTD solutions for the
8. and 12;,,. components, respectively. These components are obtained by making the
incident wave 9, polarized. These figures show that the CC-UTD solution corrects for
the caustics of the UTD solution. It also shows that the CC-UTD solution smoothly
reduces to the UTD solution away from the caustics. Although these patterns are
continuous everywhere, the 5, component is discontinuous in slope along the incident
and reflection shadow boundaries. This occurs because the slope diffraction terms
where neglected in the asymptotic expansion of the ITD diffracted field of Chapter 4.
This is generally a small effect that is usually neglected. This line of thinking is
consistent with the UTD.

2 Scattering by an Elliptic Disk

The other geometry to be studied in this chapter is the scattering by an elliptic disk.
To conform to the assumptions of the derivation of the CC-UTD in Chapter 7 it is

important that the incident plane wave impinges on the disk along one of its two
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Figure 51: Total field comparison in the 3. direction for a plate with a focal length
of a = 4], an observation distance of s, = 8] and an incidence angle of %, = 30°.
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Figure 52: Total field comparison in the . direction for a plate with a focal length
of a = 4], an observation distance of s, = 8) and an incidence angle of 9. = 30°.
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Figure 53: Geometry for the scattering by an elliptic disk.

axis of symmetry and the bistatic pattern must be taken in the plane of symmetry
of the ellipse. This geometry is shown in Figure 53. This section consists of two
parts. First, the parameters required for the CC-UTD and the UTD solutions are
determined. Next, the scattered field is calculated using the CC-UTD and the UTD.

These results are compared to a MM solution.

2.1 Elliptic Disk Scattered Field Parameters

It is important to accurately define the edge of the elliptic disk in order to determine
the diffraction parameters required to use the CC-UTD and the UTD. An ellipse is

defined by
z.\?2 Ye ) 2 _
(= (- -
where a and b are the principle axes of the ellipse in the x and y directions, respectively.

The x and y coordinates of a point of the edge of the elliptic disk can now be related
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z. = acosv (504a)

v = bsinv (504b)

where v is the only variable. The diffraction points on the edge of the disk can be
determined by recalling that cos 3 = cos 8’ at these points. In doing so, we find that
v = F, vy = 5 and

_Cl+_€”_

202 20, ‘V C12 - 40002 ; if 012 — 40002 >0

sin v, = (303)
=Ci ;% | 07 400Cy| ;i OF —4CaCa <0

are the diffraction points as shown in Figure 53. Also, €, = %1 is determined by

20, 20,

enforcing the fact that cos 8 = cos 8’ and the constants Co, C; and C; are given by

Co = b [(a2 + Rz) cos? 1! — R? cos® '¢o] (506a)
C, = 2bR (b*sin®y) — a?) coso (506b)
C, = ¥ (b2 - a2) cos? 9} — (b2 - a2)2 (506¢)

and are used to determine the locations of the non-central diffraction points. Now
that the diffraction points have been found, it is easy to see that if |sinvnc| < 1 the
observation point is in the caustic lit region and all other cases correspond to the

caustic shadow region. Next, it is easily shown that

sco = /B? + b2 + 2bR cos 9, ~ (s07)

and

s = \/R? + b2 — 2bR cos 9, (508)

are the distances from the central diffraction points to the observation point and

\/ (R? + a2) — (2bR cos ,) sin vnc + (b2 — a?) sin’ vpc (509)

8pnc = &4

with

+1 ;i |sinv,| <1
g, = { | | (510)

—j  ; otherwise
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is the distances from the non-central diffraction points to the observation point. The

curvature at any point on the edge of the disk is found to be

no_ a'd
r(Q) = [a% + (b? — a?) zz]a/z
ab
- [(asinv)? + (bcos 1;)1’]3/2 (511)
from (470). Evaluating (511) at Qco, Qc1 and @nc we obtain
b
£g(Qu0) = £g(Qa1) = = (512)
and
b
(@) = - 372 0 (513)

[62 + (a2 — b?) sin? vnc]
respectively. Also, differentiating (511) four times with respect to z., using (758)
and (763) of Appendix D to convert the derivatives and evaluating them at @ and

Qc we get
3b(a* — b?)

— (514)

£y (Q0) = £5(Qar) =

and
v 45b (a? — b2)° + 1263 (a2 — b2
52 (Qu) = K (Qu) = B+ 1 (@~ F) (515)

as the second and fourth derivatives of the curvature with respect to arc length. Using

the fact that 8 = B’ at the diffraction points,

Po=Pa=73 (516)

s 2 2 122 w2

5in fne = J i %Zz :((aaz = :)Sznj:,?c — (517)

are the oblique incidence angles at the diffraction points. The incident angles 9, and
!, are

Yoo =¥, (518)

and

(519)

cl —

, T — P! syl <
3m—v, iy,>w
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respectively, at the central diffraction points and the incident angle 1! is determined

using

—acos ) sin v,
sin ﬁ,,c\/ b2 + (a? — b?) sin® v,
at the non-central diffraction points. The diffraction angles 1 and % are found

cos Pl = (520)

using
cos P = b+ Reosyo (521)
8c0
and
cos Py = t—é—:—oﬁbﬁ ; (522)

respectively, at the central diffraction points and the incident angle 9y is found using
ab— aR cos, sin vy,
8, Sin ﬁnc\/ b2 + (a2 — b2) sin® vy,

at the non-central diffraction points. The caustic distances can now be determined

(523)

€OS Py =

using (10) of Chapter 2 and are given by

2
d - —a" 8¢
P(Qu0) = b(R cos v, + 80 cos ), + b) (524)
and
2
d a”8cy
cl) = 2
r"(Qa) b(R cos 9, + 8c1 cos Pl — b) (525)
at the central diffraction points and '
2
B + (a® — b%) sin® vpe| 8nc 5in? Buc
P (@ne) = | ] (526)

a2b (R sin v €08 P, + 8p SiN Unc cos P}, — b)
at the non-central diffraction points. Finally, it is necessary to determine the Ge-
ometrical Optics (GO) field and the incident field at each of the diffraction points.
The incident field at the observation point is

E(P) = {BLEj, +3,E),}Relbesd
X {U [1Z1 - 'ﬁo] +U ["/’o - Kzz]} (527)

which is determined using classical GO techniques and

P, = w4+, —sin7! (—bR— sin 1,1):,) (528)
'lZz = w+P,+ sin™! (% sin 1/::,) (529)
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Figure 54: Incident and reflection shadow boundaries of an elliptic disk.

are the angles corresponding to the two incident shadow boundaries as shown in
Figure 54. The incident wave polarization vectors 3 ! and ¥ ! must be transformed
into the global polarization unit vectors §,, B, and 1, as shown in Figure 55. Using

the coordinate transformation

B, = -5 (530)
¥ = B,sin(h, — P.) + %o cos(th, — ') (531)

it is found that
E(P) = {5,E} sin(yo—})~ B Ej, + %o Ej, cos(t, — )}
x giFRcos(Yo—o) {U [{51 - 'Sbo] +U [¢o - 1Zz]} (532)

is the incident field at the observation point. Next, the reflected field at the observa-

tion point is
E'(P) = {B. B}, R, + ¥, By Ry} WY [y, — ] U fdhs — 9] (533)
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Figure 55: Polarization unit vector definition for the incident and reflected fields in
the presence of an elliptic disk.
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where the reflection coefficients are R,; = F1 and
7 ' s —1 b . ,
P3 = m—1. —sin (E sin ¢o) (534)

Vs

7 — ) +sin™’ (% sin %) (535)

are the angles corresponding to the two reflection shadow boundaries as shown in
Figure 54. The reflected wave polarization vectors 3, and ¥, must be transformed
into the global polarization unit vectors 3,, 3, and 9, as shown in Figure 55. Using

the coordinate transformation

Br = —Bo (536)
Pr = Bosin(o+ ¥)) + 9o cos(yo + %)) (537)
it is found that
E"(P) = {5, Ei sin(so+9.) + B Ej, +Po E}, cos(vo + 1)}
x e Reosbetvl) U [, — obs] U [hs — o) (538)

is the reflected field at the observation point. The GO field at the observation point
is the sum of the incident field and the reflected field at the observation point. The

diffracted field can now be determined using the diffraction parameters found previ-

ously.
The incident field at each diffraction point and polarization vectors are required

to determine the diffracted field near the caustic. The incident field at the central

diffraction points are

E'(Qu) = {B, B}, + $, Ei, } e~ Fbeonvs (539)
at Q. and

E(Qa) = {F. By, + §, By J oo (540)
at Q.. The incident wave polarization unit vectors at the two central diffraction

points are Bly = B, and ¢, = ¥, at Qu, and B}, = ~f, and ¥}, = —¢, at Qu.

These polarization unit vectors are shown in Figure 56. Also, the diffracted field
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Figure 56: Polarization unit vector definition for the fields diffracted by an elliptic
disk.

polarization unit vectors are transformed to the global polarization unit vectors 3,,

ﬁo and 9, using

5o = B, cos(Peo — Po) + Po sin(Peo — %o) (541)
BcO = Bo (542)
Do = —B5o sin(teo — o) + Po cos(Po — %) (543)

for the field diffracted from @ and

3::1 = —30 COS(¢c1 '+‘ ‘¢’o) + 1;0 Sin(“)[)cl + ¢o) (544)
Bcl = —Bo (545)
;ﬁcl = 3 Si11('51301 + ¢o) + "7;0 COS(‘!ﬁcl + ¢o) (546)

for the field diffracted from Q.. These polarization unit vectors are shown in Fig-
ure 56. These vectors can be used in conjunction with the diffracted field parameters
derived earlier in this subsection to obtain the expressions for the field diffracted from

the central diffraction points. The only quantities remaining in these expressions are
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the caustic correction transition functions. The argument of the caustic correction

transition functions of the field diffracted from @ are

€ = '\/2}: (51 Une + 1) bCOS P!, — 8ne + 800 | €307 /4 (547)
on the lit side of the caustic and

b= ‘\/2k [(sin vpe + 1) bcos P!, — 8,0 + 80) | €T/ (548)
on the shadow side of the caustic where

d
P*(Qw) }
= —sgn . 549
n= ol (349

The argument of the caustic correction transition functions of the field diffracted from
Qa are

& = ’\/2k [(sin vpe — 1) beos 9! — 8pc + 8c1] g~s3mn/4 (550)
on the lit side of the caustic and

& = l\/Zk [(sin vpe — 1) beos P!, — 8pc + 841] e~ Imw/4 (551)

on the shadow side of the caustic where

= —spn pd(ch)
™= { [pd(czd)+sa]} ' (552)

The expressions derived in Chapter 7 can now be used to determine the field diffracted

by the two central diffraction points.
The field diffracted by the two non-central diffraction points must be determined.
The incident field at the non-central diffraction points

E(Que) = {BLE}, + 9, By} eitteinonceosd, (553)

along with the incident wave polarization unit vectors

_ B. (- asinv,.) + 9, (bsin ¥/, cos Une)

B (554)
sin ﬂ,,c\/bz + (a? — b?) sin® v,
and R R
NS SRy 1l el
7= B, (— bsin ) cos vnc) + Y., (— asin vy,) (555)

sin Bney/b? + (a2 — b2) sin® vy,
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are necessary in determining the field diffracted by the non-central diffraction points.
Finally, it is necessary to determine the uniform polarization vectors ﬁu({-‘) and \f’u(ﬁ )
as given by (415) and (416) of Chapter 7, respectively. Since the non-central diffrac-
tion points can coalesce to either Q. or @, we must refer these vectors to the
appropriate point. First, if —1 < sinwv,. < 0 then the non-central diffraction points
are closer to Q. Therefore, referring B, (¢) and ¥,(¢) to Qo we obtain

~ -— 241
Bu(e) = 3o sco' a? sin v, €OS Ve T,,C(EO., 1720, 2)
82, sin ﬁ,,c\/ b2 + (a? — b?) sin® vp,
b {a2 cos Yo + Scobsin® 1/’c0} €05 Vpe (8in Une + 1) Tnc(€0, 70, 4)
82, sin ﬂm\/ b2 + (a2 — b?) sin® v,
. — 8% asin vye Tne(&o, 70, 0)
+ B
82 sin B,,c\/ b2 + (a2 — b?) sin® vy,
ab{sc0 cos Yo — b} (sin vnc + 1)? Trc(€o, 70, 4)
s2_sin ﬂnc\/l; + (a? — b?) sin® vy,
~ | — 82, bsin e €08 Vnc Tnc(€os 70, 2)
+ Yoo
s2_sin ﬁ,.c\/ b? + (a? - b?) sin? vy,
bsin 1hco {800 €08 Yo — a?} €08 Ve (810 Ve + 1) Tnc(€0, 70, 4) (556)
s2_sin ﬂ,,c\/ b + (a2 — b?) sin® vy,

-+

-+

and

- . | absin ¥ (sinvpe + 1) Tne(é0, 70, 2)
‘I’u(f) = <0 ;
Spc Sin Prc \/1;2 + (a? — b?) sin’® vy,
~ { 8.0 bsin Yo cos vye Tre(€o, 70, 2)
8pc SIN ﬁ,.c\/ b2 + (a2 — b?) sin® vy,
- { — 8¢9 asin v Tpe(€0, 70, 0)
8pc sin ﬂm\/ b2 + (a2 — b?) sin® vy,
abcos ¢c0 (Sin Unc + 1) Tnc(&O, 7o, 2)
850 51D ,B,,c\/ b2 + (a2 — b?) sin’ vy, ’

(557)

respectively. The coordinate transformation in (541) through (543) is then used
to transform this expression into the global coordinates 5,, 3, and 1,. Next, if

0 < sinv,. < 1 then the non-central diffraction points are closer to Q.. Therefore,
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referring B, (¢) and ¥,(¢) to Q. we obtain

ﬁu(é) = gcl — 8al a2 sin VUne COS Vg Tnc(fl, T, 2)
82, sin ,B,,c\/b2 +(a® — 8) sin’vne
b {a2 o5t + 8c1bsin? ¢c1} €08 Uy (5in vy — 1) Trc(€1,71,4) }

+
s2_sin ﬂ,,c\/ b2 + (a? — b?) sin? vy,
5 2 i nc Tnc b} L] 0
+ B, 8% asinwv (é1,m1,0)
s2_sin ﬂ,,c\/ b2 + (a? — b2) sin® vy,

ab {sc1 cos e — b} (sinvpe — 1) Tpe(€1,71,4) }
52, 51 fpcy/b? + (a2 — B2) sin® vy
L b { 82, bsin ¥ 05 Vpe Tne(€1,71,2)
82, sin ﬂnc\/ b2 + (a? — b?) sin? vy,
bsin v {8c1bcos Yo — a®} €os vpe (5in vpe — 1) Tnc(€1,m1,4) } (558)
82 sin Bm«/bz + (a2 — b2) sin® vy,

and

& ) = 3a — absin 9 (sin vpe — 1) Tpc(€1,71,2)
: Sne SiD ﬂ,,c\/b'*’ + (a2 — b?) sin® v,
+ B — 8.1 bsin YPey €0s Ve Tre(é1,71,2)
cl
Spe SID ﬁnc\/ b + (a? — b?) sin® vy,
+ '(Z Sca1 @ sin VUne Tnc(gl s M1y 0)
cl
Spe SIN ﬂnc\/bz + (a2 — b?) sin® vy,
4= abcos Yy (sinvpe — 1) Tne(€1,m,2) (559)
Spc SIN ﬁm\/b"’ + (a? — ) sin vy, ’
respectively. The coordinate transformation in (544) through (546) is then used to

transform this expression into the global coordinates 3, Ea and {5‘,. These vectors
along with the diffracted field parameters derive earlier in this subsection can now be

used to calculate the field diffracted by the non-central diffraction points.

2.2 Numerical Calculation of the Field Scattered by an El-
liptic Disk
The numerical calculation of the field expressions derived in Subsection 2.1 confirms

the uniformity of the CC-UTD. This geometry is representative of a typical practical
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problem. This subsection is devoted to the numerical calculation of the field scattered
by an elliptic disk.

The results generated in this subsection will be presented in terms of the scattered
field. The field scattered by an object is given by

E*(P) = EYP) - E'(P) (560)

where E'(P) is the total electric field and Ei(P) is the incident field. It is important
to note that throughout this subsection, E‘(P) is the incident field at the observation
point in the absence of the object and not the incident field part of the GO field.
Also, the scattered field components will be normalized using

,- E*(P
opp = 4TR® [;_'_Ef((?; (561)
- 2
5, . B
Oy = AT R? %—-—E’fi_?) (562)
and
o+ E*(P
a¢:¢=47rR ‘;i, E‘EP; (563)

which are consistent with the definition of the far-zone radar cross section. These

results are converted into units of decibels per square meter-(stm) using
o (dBsm) = 10log,,[0] (564)

since the expressions in (561) through (563) are power ratios multiplied by length
squared. This subsection is a comparison of the CC-UTD, UTD and Moment Method
solutions. The MM solution used to determine the scattered field is generated using
a general program developed by Nehrbass, Gupta and Newman [37].

The first geometry considered here is the plane wave scattering by an elliptic disk
with ¢ = 3.0 m and b = 1.5 m. Also, the incidence angle is taken to be 9, = 45° and
the observation distance is R = 2.5 m. All of the calculations for this geometry are
performed at a frequency of 300 MHz.

It is easy to show that the ISB’s for this geometry occur at ¥, = 199.8959° and
¥ = 250.1041° using (528) and (529), respectively. Also, the RSB’s for this geometry
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occur at %3 = 109.8959° and 9; = 160.1041° using (534) and (535), respectively.
The CB’s for the elliptic disk occur when p? + s in the amplitude spreading factors
approaches zero. Using this fact, the CB’s of Qo are found using

bseo cos 3! + bRcos, 4+ b* —a® =0 (565)
and the CB’s of ().; are found using
bscy cos ! + bRcos v, — b2 +a’ =0 (566)

where each of these must be solved separately for cos1),. For the geometry chosen
here, the non-central diffraction points only coalesce at Q0. Therefore, using (565)
we find that

25 cos®1p, — 105cos 9, + 64 = 0 (567)

must be solved for cos®,. Solving this equation, the valid root is cos s, = .73985
which results in CB’s occurring at 1cg, = 42.2811°, 317.7189°.

First, the scattered field comparison of the B, component is discussed. The CC-
UTD, UTD and MM solutions are computed and shown in Figure 57. This component
is discussed first because it is effected the least by slope diffraction and double diffrac-
tion effects. It is seen from Figure 57 that the CC-UTD solution is not only bounded,
but also smooth and continuous across the caustics. Also, the CC-UTD solution
smoothly reduces to the classical UTD solution away from the caustics as expected.
There is excellent agreement between the CC-UTD solution and the MM solution
throughout the pattern.

Next, the scattered field comparison of the 8, and 1, components are discussed.
The CC-UTD, UTD and MM solutions are computed and shown in Figure 58 for the
3, component. First, the 3, component shown in Figure 58 is highly dependent on
slope diffraction near the incident and reflection shadow boundaries. Also, double
diffraction plays an important role near grazing to the disk. However, these effects
have been neglected in these calculations. The scattered field in the caustic regions
is dominated by the coalescing diffraction points. This fact can be seen in Figure 58.

The field predicted by the CC-UTD near the caustics is in excellent agreement with
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Figure 57: Scattered field comparison of the B, component in the y-z plane of an
elliptic disk with a = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 m and an

incidence angle of ! = 45° at a frequency of 300 MHz.
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Figure 58: Scattered field comparison of the 5, component in the y-z plane of an
elliptic disk with @ = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 m and an
incidence angle of ¥, = 45° at a frequency of 300 MHz.
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Figure 59: Scattered field comparison of the bo component in the y-z plane of an
elliptic disk with a = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 m and an
incidence angle of 1] = 45° at a frequency of 300 MHz.

the MM. Also, the CC-UTD solution smoothly reduces to the classical UTD solution
away from the caustics. The inclusion of the slope diffraction terms would greatly
improve the scattered field near the incident and reflection shadow boundaries. Also,
the inclusion of the double diffraction terms would improve the scattered field near
grazing angles. However, not including these terms is consistent with the assumptions
of the classical UTD. Next, Figure 59 shows the 1), component of the scattered field
predicted using the CC-UTD, UTD and MM. Slope diffraction has little effect for
this polarization, but double diffraction has a noticeable effect near grazing angles.
However, the scattered field in the caustic regions is dominated by the coalescence
of diffraction points. These effects can be seen from Figure 59. First, the CC-
UTD solution is smooth and continuous across the incident and reflection shadow
boundaries and in good agreement with the MM. Near the caustics, the CC-UTD

solution is again smooth and continuous and in excellent agreement with the MM.
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One of the advantages of ray optical solutions is the computational speed of these
solutions. All three of these polarization components where run at the same time using
the general MM program developed by Nehrbass, Gupta and Newman [37]). For this
geometry, the MM solution was run on a Silicon Graphics Indigo/R4K workstation
and required 2 hours, 27 minutes and 8.31 seconds to compute. However, these three
scattered field components for the CC-UTD and UTD solutions were run concurrently
on the same computer and required only 3.92 seconds to compute. This is a distinct
improvement in computational efficiency.

It is now of interest to study the effects of the different approximate solutions
discussed in Section 5 of Chapter 7. For the sake of discussion, the first approx-
imate solution discussed in Section 5 of Chapter 7 will be denoted by CC-UTD;.
The CC-UTD, solution assumes that the edge is parabolic in shape near the cen-
tral diffraction point. Also, the second approximate solution discussed in Section 5
of Chapter 7 will be denoted by CC-UTD,. This solution assumes that the main
contribution to the diffracted field comes from two specific integrals and the rest are
negligible.

The CC-UTD, CC-UTD;, CC-UTD; and MM solutions are compared in the y-z
plane of an elliptic disk with @ = 3.0 m, b = 1.5 m, an observation distance of R = 2.5
m and an incidence angle of ¥/, = 45° at a frequency of 300 MHz. The comparisons of
these solutions for the 3, ﬁo and 9, components are shown in Figures 60, 61 and 62;
respectively. As expected there is a negligible difference between the CC-UTD and
CC-UTD; solutions. This is expected because the diffracted fields depend on the
local geometry of the diffraction point. Therefore, the leading term of the Taylor
series about the diffraction point accurately describes the edge and all others can be
neglected. However, the difference between the CC-UTD and CC-UTD, solutions is
larger. This occurs because different contributions to the diffracted field have been
neglected. These solutions differ very little in the caustic regions and are still in good
agreement with the MM solution.

Although Figures 60 though 62 show that these three approximate solutions agree
very well with the MM solution, the differences between the CC-UTD, CC-UTD, and
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Figure 60: Scattered field approximation comparison of the 3, component in the y-z
plane of an elliptic disk with @ = 3.0 m, b = 1.5 m, an observation distance of R = 2.5
m and an incidence angle of 9/ = 45° at a frequency of 300 MHz.

CC-UTD, are of interest. To better illustrate this, the percent difference between
these three solutions will be defined as

5. {E*(P) - E(P)}]

P,= — x 100% (568)
¥, - E¥(0)
for the s, components,
8, {E*(P) - E(P
Pg= b { A( 1 ( )}, x 100% (569)
B; - E*(0)
for the 3, components and
bo - { E*(P) — E2(P
P, = |¢ { (P) ( )}l x 100% (570)

¥, - E+(0)

for the 7, components. Also, E'(P) is the scattered field predicted by the CC-UTD
solution, E2(P)is the approximate scattered field predicted by either the CC-UTD; or
the CC-UTD, solution and E¢(0) is the incident field at the origin. First, the percent
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Figure 61: Scattered field approximation comparison of the B, component in the y-z
plane of an elliptic disk with ¢ = 3.0 m, b = 1.5 m, an observation distance of R = 2.5
m and an incidence angle of 9/, = 45° at a frequency of 300 MHz.

difference between the CC-UTD and CC-UTD; is shown in Figure 63. This figure
shows that for the 3, and 7, components of the scattered field, these solutions differ
by less than 0.4%. Also, this approximation only simplifies the field in the caustic
shadow region for these components. Therefore, there is no difference between these
solutions in the caustic lit region for these scattered field components. This figure
also shows that for the 8, component of the scattered field, these solutions differ by
less than 0.5% in the caustic shadow region and 4% in the caustic lit region. In most
cases of interest, these differences are negligible and this approximate solution should
be used. Also, the percent difference between the CC-UTD and CC-UTD; is shown
in Figure 64. This figure shows that the difference between the CC-UTD solution and
the CC-UTD; is less than 8%. Although this difference is greater than that of the
CC-UTD; solution, it is a much simpler solution to apply. Therefore, this solution
should be used first and then refined later if the need arises. However, this solution

should be accurate enough for most practical problems.
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Figure 62: Scattered field approximation comparison of the {b:, component in the y-z
plane of an elliptic disk with a = 3.0 m, = 1.5 m, an observation distance of R = 2.5
m and an incidence angle of 9] = 45° at a frequency of 300 MHz.

The next geometry considered here is the plane wave scattering by a circular disk
with ¢ = b = 2.5 m. Also, the incidence angle is taken to be P! = 70° and the
observation distance is R = 5.0 m. All of the calculations for this geometry are
performed at a frequency of 300 MHz. This geometry is interesting in that a circular
disk is a typical geometry studied using high frequency techniques.

It is easy to show that the ISB’s for this geometry occur at %, = 221.9757° and
1, = 278.0243° using (528) and (529), respectively. Also, the RSB’s for this geometry .
occur at 3 = 81.9757° and 7, = 138.0243° using (534) and (535), respectively. The
CB’s of diffraction point Q. are found by solving (565) and are ¢y, = 109.1656°,
250.8344°. Similarly, the CB’s of diffraction point @).; are found by solving (566) and
are g, = 116.4425°, 243.5575°.

Again, the scattered field comparison of the 3, component is discussed first because
this component is effected the least by slope diffraction and double diffraction effects.
The CC-UTD, UTD and MM solutions are computed and shown in Figure 65. It is
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Figure 63: Percent scattered field difference between the CC-UTD and CC-UTD,
solutions in the y-z plane of an elliptic disk with a = 3.0 m, b = 1.5 m, an observation
distance of R = 2.5 m and an incidence angle of 9, = 45° at a frequency of 300 MHz.
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Figure 64: Percent scattered field difference between the CC-UTD and CC-UTD,
solutions in the y-z plane of an elliptic disk with ¢ = 3.0 m, b = 1.5 m, an observation
distance of R = 2.5 m and an incidence angle of 9! = 45° at a frequency of 300 MHz.
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Figure 65: Scattered field comparison of the B, component in the y-z plane of a
circular disk with @ = b = 2.5 m, an observation distance of R = 5.0 m and an
incidence angle of 9/ = 70° at a frequency of 300 MHz.
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Figure 66: Scattered field comparison of the 3, component in the y-z plane of a
circular disk with ¢ = b = 2.5 m, an observation distance of R = 5.0 m and an
incidence angle of ¢, = 70° at a frequency of 300 MHz.

seen from Figure 65 that the CC-UTD solution is not only bounded, but also smooth
and continuous across the caustics. Also, the CC-UTD solution smoothly reduces
to the classical UTD solution away from the caustics as expected. However, the
scattered field in the caustic regions is about 3 dB below the result predicted using
the Method of Moments. This can be attributed to the CB’s of Q. and Q. being
close together. In order to obtain a more accurate result, all four diffraction points
should be accounted for in the uniform asymptotic expansion. This would result in a
solution that contains Swallowtail integrals [38].

Next, the scattered field comparison of the 8, and Po components are discussed.
The CC-UTD, UTD and MM solutions are computed and shown in Figure 66 for
the 3, component. First, the 3, component shown in Figure 66 is dependent on
slope diffraction near the incident and reflection shadow boundaries. Also, double
diffraction plays an important role near grazing to the disk. However, these effects

have been neglected in these calculations. The scattered field in the caustic regions
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Figure 67: Scattered field comparison of the %, component in the y-z plane of a
circular disk with @ = b = 2.5 m, an observation distance of R = 5.0 m and an
incidence angle of ¥/ = 70° at a frequency of 300 MHz.

is dominated by the coalescing diffraction points. This fact can be seen in Figure 66.
The field predicted by the CC-UTD near the caustics is in excellent agreement with
the MM. Also, the CC-UTD solution smoothly reduces to the classical UTD solution
away from the caustics. The inclusion of the slope diffraction terms would greatly
improve the scattered field near the incident and reflection shadow boundaries.’ Also,
the inclusion of the double diffraction terms would improve the scattered field near
grazing angles. However, not including these terms is consistent with the assump-
tions of the classical UTD. Next, Figure 67 shows the 1), component of the scattered
field predicted using the CC-UTD, UTD and MM solutions. Slope diffraction has
little effect for this polarization, but double diffraction has a noticeable effect near
grazing angles. However, the scattered field in the caustic regions is dominated by
the coalescence of diffraction points. These effects can be seen from Figure 67. First,
the CC-UTD solution is smoofh and continuous across the incident and reflection

shadow boundaries and in good agreement with the MM. Near the caustics, the CC-
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UTD solution is again smooth and continuous, but about 3 dB below the scattered
field predicted by the Method of Moments.

One of the advantages of ray optical solutions is the computational speed of these
solutions. All three of these polarization components where run at the same time using
the general MM program developed by Nehrbass, Gupta and Newman [37]. For this
geometry, the MM solution was run on a Silicon Graphics Indigo/R4K workstation
and required 2 hours, 7 minutes and 38.23 seconds to compute. However, these three
scattered field components for the CC-UTD and UTD solutions were run concurrently
on the same computer and required only 6.24 seconds to compute. This is a distinct

improvement in computational efficiency.
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SECTION 9

Conclusion

The high frequency electromagnetic field near the cusp of a caustic has been investi-
gated. New caustic corrected UTD solutions have been developed to obtain fast and
accurate results. These solutions also lead to valuable physical insight into the nature
of the electromagnetic fields near the cusp. The Incremental Theory of Diffraction
(ITD) has been used to obtain the ray optical solutions in this work. These solutions
use the GO fields found using classical GO techniques and a caustic corrected UTD
diffracted field is used to correct the GO fields. These solutions predict fields which
are smooth and continuous through the diffracted field caustics and reduce to the
classical UTD solution away from the caustics. |

A caustic corrected UTD solution for the radiation by a source on a flat plate is
derived in Chapter 5. The CC-UTD diffracted field in the caustic lit region is found

to be
"Jch

B(P) ~ E(Q.)-D (Q)/r(Q.)
¢ B(QL) D QL@ o
+ B(Qz)-D@ur@n) e

where the dyadic diffraction coefficients for the central and non-central diffraction

(571)

points are
D (Q.) = — #'% Du(Q:) Tu(¢,0) (572)
and

D' (Qne) = — PP Da(Qne) Toclé, 1, 0), (573)
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respectively. The diffraction coefficient Dy(Q.) is identical to the UTD half-plane

diffraction coefficient for the hard polarization. Also, the caustic correction transi-
tion functions T,(¢,0) and T;..(¢,7,0) are defined in (655) and (656) of Appendix B,
respectively. The CC-UTD diffracted field in the caustic shadow region is found to
be

- . e—JkR.
BY(P) ~ E(Q)-D(Q ) VP (Qc)
- e” kRC
+ E(Q)-D (@) Vr(@2) (574)
where the dyadic diffraction coefficients at the central diffraction point are
D (Q.) = ~ %4 Da(Q:) Tu(6,0) (575)
and
=S -
D (Qc) = "¢,¢' Dh(Qc) Ta(§72) . (576)

The caustic correction transition functions T,(¢,0) and T,(¢,2) are defined in (674) of
Appendix B. Also, Dy(Q.) is the UTD half-plane diffraction coefficient for the hard

polarization and
D@ = SR b0 (i [1- 5]

+ K(Qu)sin 4. — 3 (L)) } (577)

is a curvature dependent diffraction coefficient. These equations can now be used to
calculate the field on the both sides of the diffracted field caustic when the source is
located on the face of the plate.

Chapter 7 is a derivation of a CC-UTD solution for cases when the near-zone
point is not located on the face of the plate. Although a complete CC-UTD solution
is derived, it is shown that a very simple approximate solution is accurate enough
for most practical problems. This approximate CC-UTD diffracted field solution is

written as

Pd(Qc) g~k

=1 o .=L
E4P) ~ E(Q)-D (QC)J,c ATy
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pd(an) e"jksnc

+ E(QL)-D (@) \ 8nc [p4(@nc) + 8nc]

v Bew D@ e O

in the caustic lit region, where
=L P, e
D (QC) ~ "ﬂ I.Bc Ds(QC) TC(f’ 0) - "p ,"pc Dh(QC) TC(f’ 0) (579)
is the dyadic diffraction coefficient for the central diffracted field and
e [2(0) -]

o
82, sin B,

_ﬁL(an) ~ —B’ﬁc { } D,(Qnc) Tnc(€,1,0)

8ncsin B

—% ' {—3" [2(2) -2 } Di(Q@nc) Tuc(é,7,0) (580)

is the dyadic diffraction coefficient for the non-central diffracted fields. This approx-
imate CC-UTD diffracted field solution is written as

p4(Qc) g—Ikse
8¢ [pd(Qc) + -9c]

- ’ s
IR RO P o RS

E{P) ~ E'(Q.) -"E“S(QC)J

!

in the caustic shadow region, where

D (Q.) ~ —B'B. Du(Qc) To(€,0) — % "% Da(Q<) Ti(€,0) (582)

is the dyadic diffraction coefficient for the central diffracted field and

_ 45 2
B ~ —B8 (55 7@+ o

X [C(lc) - 4N§(Qc)] Da(Qc)) Ta(f) 2)

2
Sc

85k

- (5 7@ +
« [o(t) - 4+2(Q2)] Dh(Qc)) T,(6,2)  (583)

is the dyadic diffraction coefficient for the curvature dependant central diffracted field.
Again, D, 1(Q.) are the UTD half-plane diffraction coefficients.
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There are several restrictions on the use of the CC-UTD solutions. First, the edge

of the flat plate must be symmetric about an axis and the source and observation
points must lie in the plane of symmetry. This ensures that the diffraction points
are symmetrically located. It is also important to note that the caustic boundaries
should not be close to the incident or reflection shadow boundaries. The CC-UTD
solutions begin to break down as these boundaries approach each other because only
the diffracted field contribution of the ITD is integrated. In these cases, the PO
integral minus its edge contribution can no longer be approximated by the GO field.

These solutions have been applied to two different problems in order to show their
accuracy and practicability. The first problem is the radiation by a short monopole
mounted in the center of an elliptic disk. The directive gain of this antenna has
been calculated using the CC-UTD, UTD and MM solutions. These patterns were
compared and shown to be in good agreement. The other problem considered was the
bistatic scattering by a plane wave incident on an elliptic disk. The bistatic scattering
patterns have been generated using the CC-UTD, UTD and MM solutions. These
scattering patterns were compared and shown to be in good agreement.

Several generalizations of these results can be performed in future research endeav-
ors. First, the coalescence of two diffraction points can be investigated using the ITD
and the uniform asymptotic expansion of Chester, Friedman and Ursell [18]. Also,
three unequally spaced and nearly coincident diffraction points can be investigated.
This can be accomplished using the ITD and the uniform asymptotic expansions
in [38, 39, 40, 41]. These expansions involve the Pearcey integral [42] and its deriva-
tives. These functions can be computed using the small and large argument formulas

found in [41, 43, 44, 45].
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Appendix A

Auxiliary Integral Evaluation

Three different auxiliary integrals are encountered in the evaluation of the incremental
diffracted field as shown in Chapter 3. These integrals are identical to those defined
by Michaeli in the appendix of [21, 22]. The closed form evaluation of these auxiliary
integrals is performed in this appendix using the same procedure as the one described
by Michaeli in [21, 22]. It is important to note that the purpose of Chapter 3 is to
obtain an expression for the field diffracted by an infinitesimal length of the edge of
a wedge. Therefore, the contribution from the lower limit of the auxiliary integrals is
to be determined. To illustrate this fact, only the lower limit of these integrals will
be displayed throughout this appendix.
The first integral treated here as given by (46) of Chapter 3 is
Uy = / u(X,9') e XCdX, | (584)

1]

where the integral representation of u(X,%’) as given by (31) of Chapter 3
u(X, ) = o [ Ga(e) ¥ et (585)
’ 27in J

and

Gh(6) = sin (5)
cor (&) —cos (2)

is to be used here. The contour of integration in (585) is shown in Figure 68. To begin

(586)

the evaluation of (584) we wish to perform the integration in X first because of its
simplicity. However, care must be taken when interchanging the order of integration

in (584). The order of integration can only be changed if the integral on X converges
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solution for the total field in the
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Figure 69: Deformed contour of integration for the total field in the presence of a
wedge.

at X — oo for all ¢ on the contour of integration in the £ plane. This condition is
not satisfied on the contour I'. However, deforming the contour of integration from
T to I' as shown in Figure 69 will ensure convergence. Figure 69 shows that several
poles of the integrand are crossed when the contour of integration is deformed to I'.

Therefore, including the residue contributions from these poles, (585) becomes
u(X ¢l) - 1 /Gh(ﬁ) er cosé d{ + Z er cos €m (587)
’ 2wjn -
r\l

where £, are the roots of

cos (%) — cos (%) =0 (588)

in the interval 0 < ¢, < 7. Substituting (587) into (584) we obtain an expression

1 . .
Ul = / '2—11_'3.'1_1’ / Gh(e) e]X(cosE-'}-C) d£ dX + Z/eJX(cosem‘*'()dX (589)
0 ™ m (4]
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Figure 70: Deformed contour of integration enclosed at infinity.
which will allow us to interchange the order of integration

3X (cos £+¢) 1. X (cosEm+¢)
U, = zm / / Gil€) e dXd+ 3y / & dX.  (590)

Since the convergence of the integral is now ensured, the integration with respect to

X is performed

-1 G};(E) i X (cos€+¢) _j er(cosf,,,-{-()
Ul = eJ COS d{ + (591)
27m1'~/ cos +¢ ; cosém+¢ |,
which results in
_ 1 Ga(¢€)
U= 2rn ./ d+ Z cos fm +¢ (592)

J cosé + (¢
as the contribution from the edge. The remaining integral can be evaluated by enclos-
ing the contour I' at infinity as shown in Figure 70. The Cauchy Residue Theorem
can be applied by including the poles at £, and the additional pole at
G=cos(—()=mr—cos" {=mr—a (593)
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enclosed by the contour of integration. To completely determine the pole at { = &

we must define cos™! {. For any real (,

a:cos_1C=—jln(C+\/("’_———1_) (594)
where the proper branch of the square root is
[ _ I\/ZT—_I‘ sif (< -1
¢-1=9q jVO=1I| ;if-1<¢<1 (595)
{ l\/@_—Tl ;if(>1

and the principal branch of In(z) is used. That is In(2) = In|z| 4 jarg(z) where 0 <
arg(z) < . Now that the pole is completely defined, the evaluation of (592) can be

completed. Using the Cauchy Residue Theorem including the indicated poles, (592)

1s

_ =J 1 J
U = ;cos£m+(+jsina Gh(a)+§;cos£m+ﬁ
= ——Gi(e) (596)
T jsina h
where
Lgip (Z=2=
(a) = (=)

cos (3'—39‘—) — cos (ﬁ—')

- %l [cot (—————-” —(a- ’/")) + cot (————" — (o ‘bl))] (597)

n 2n 2n

is a hard diffraction coefficient in the spectral domain. This completes the closed
form evaluation of the edge contribution of U;.
The second integral as given by (47) of Chapter 3 is
_ [ 0uX,¥) xc
U, = / S eXCax (598)

(4]

where u(X,7') is given by (585). To make the differentiation with respect to X

simpler, we recognize that this integral is easier to evaluate if we use integration-by-
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parts. Using integration-by-parts, (598) becomes

U = (X 9)e%| ~ [ulx,4) o (%) ax

= —j¢ / u(X,9') %€ dX — u(0,9') (599)
d
where we recognize the integral as U; and ¢ = cos & from (594). Therefore, we obtain
U, = —jcosa Uy — u(0,7") (600)
where
w(0,9") = l (601)

from the eigenfunction solution in (30) of Chapter 3. Thus, substituting (596)
and (601) into (600) we arrive at

U, = —cota G2(a) — % (602)

where again Gj(a) is a hard diffraction coeflicient in the spectral domain.

Finally, the third integral as given by (48) of Chapter 3 is

Us = / 1 au(x,¢) e XCax (603)

where u(X,1)’) is given by (585). The evaluation of Us; begins with the evaluation of
the derivative of u(X,’) with respect to 9'. Again, we wish to use integration-by-

parts to make the evaluation easier. Therefore if we recognize

1 Bu(X,'qb') _ 1 a i X cos
X oy B 21ranI:/{a¢' Gh(f)} el
-1 d )X cos
= sax/ {7 S0} e (o0
where "
- (") (605)

G.(¢) = -
O e e (%)
we obtain a form that can be integrated by parts. Using integration-by-parts, (604)

becomes
! _ ) x+joo
_1_ 8u(X,¢) - 1 G’(s) eJXcosf
X Oy 2njnX "
—w+joo
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1 a 1 X cos
t oy / AGF (7€) &
- 2;3; / sin £ G,(£) X ¢ dg (606)

and it is important to recognize that the value of the integrand at £ + joo is zero.
Again, the contour of integration is deformed from I' to I' to ensure convergence.
Including the residue contributions from the poles that are crossed,

1 Bu(X,#)

-1 . i X cos
% = / sin £ G, (€) e € d¢

rl
sin {, sin (%:)
m  sin (%’f)
which is now in a form that allows us to interchange the order of integration. Substi-

tuting (607) into (603) we obtain

+ giX costm (607)

— / _2:1';!; / sin£ G,(f) er(cosf‘l'f) d£ dX
sin §,, sin (ﬂ)

sm )

where by interchanging the order of integration

ejx(cosem+C) dX (608)

+E/

-1 . 1 X (cos
Uy = o— /' / sin £ G, (£) eI X (5 €+0) g X d¢

sin &, sm .
/ 3 eJX(cos£m+C) dx . (609)
J sm
The integration with respect to X is performed,
-1 sin £ G,(¢) i X (cos€+¢)
Us = 2‘”'11,,/ cosé +( ¢ i:ld£
._j sin f,.,, sin "’ﬁ_, ;
N Z = ( ) g3 (cosém+() (610)
m 51n(n){COSfm+<} 0
resulting in
e e ()
Us ./ cos{ + ¢ A+ o

-_27rjnr, m sm( ){cosfm—i-C}
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as the edge contribution of Us;. Enclosing the contour at infinity as shown in Figure 70

and using the Cauchy Residue Theorem,

—7sin €, sin (ﬂ) 7 sin &, sin (—'1’—')
U3 = + G{a) + Z
w sin (%2){ cosém + ¢} in (%) { cos ém + ¢}
= 62(a) (612)
where
— L5in (ﬂ)

Gi(a) =

cos (%) — cos (2)

- R () ()] g

is a soft diffraction coefficient in the spectral domain.-
The expressions for U;, U, and U; obtained here are identical to those reported
by Michaeli [21, 22]. It is seen that for all three integrals, the results are proportional

to the soft and hard diffraction coefficients corresponding to the 0-face as expected.
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Appendix B

Uniform Asymptotic Expansions
for Evaluating Integrals with
Three Collinear and Equally
Spaced Stationary Phase Points

The problem of asymptotically evaluating an integral near a cusp requires a uniform
asymptotic expansion for an integral with three coalescing stationary phase points.
The method used here was first presented by Chester, Friedman and Ursell [18] who
derived a uniform asymptotic expansion for a contour integral with two coalescing
saddle points. This method was later extended by Bleistein [39] to include many
saddle points and algebraic singularities. Later, Ursell [40] confirmed Bleistein’s result
with more mathematical rigor. Most recently, this method was studied by Martin [46]
to accurately determine the regions of validity of these uniform asymptotic expansions.
An expansion similar to the one derived here can be found in [47, 48] except only
the leading term is retained there. Also, the arguments of certain quantities are left
undefined. The expansion derived here retains the first two non-vanishing terms and

completely defines all quantities.

1 Canonical Integral Mapping
Let us consider an integral of the form

In(K) = f(z — 2)"g(2)e"* 1) d2 (614)
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where g(z) is a smooth, slowly varying and even function of z about z = z. such
that g(z.) # 0 and f(2) has three equally spaced, collinear stationary phase points at
Zs = (~2ncy Zc, +2nc) defined such that f(3,) = f™(z,) = 0. The subscripts ¢ and nc
are used to denote the central and non-central stationary phase points, respectively.
It is also assumed that K is a large real number and m is a real and even integer
greater then or equal to 0.

This integral must be mapped to an integral with the simplest possible phase
function that has the same critical point structure as the initial integral. We begin

by making the substitution
f(z) = F(t) = pt* + 2nat® + b (615)

where p = sgn{f"(z.)} and 5 = sgn{f"(z.)}. It is clearly seen that F(t) has
three equally spaced, collinear stationary phase points at £, = (—tnc,te,+tnc) =

(=v~#na,0,++/—pna).
The constants a and b must now be determined. To do so, we require that the

stationary phase points in the ¢ plane coalesce when the stationary phase points in

the z plane coalesce. Therefore, if we map f(z,) — F(Z,) we get
b= f(z) (616)

and

a = £/|f(zne) ~ £(20)] (617)
where the sign of a must be determined. Two conditions must be satisfied in order to
completely determine the sign of a. If 4 and 7 have the same sign, f(z) has one real
stationary phase point and two complex conjugate stationary phase points. Also, if
p and 7 have opposite signs, f(z) has three real stationary phase points. Enforcing

these conditions on F'(t) we find

@ = |y/F(zne) — £z

To properly map (z — z.)™g(z) to the ¢ plane, we make the substitution

: (618)

Gult) = s(a) 5 (252" (619)
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which results in the integral

In(K) = / ™G ()T KF Ot (620)

where Gp(t) is an analytic function of t. Gp(t) must be expanded in a series to

obtain a uniform asymptotic expansion of I,(K).

2 A Uniform Asymptotic Expansion Using the
Chester, Friedman and Ursell Technique

Since Gy, (t) is an analytic function, we can expand it in terms of the power series

Gm(t) = Y (an+ bat + cnt®)(4put® + 4nat)”

n=0
= ao+bot + cot’ + Y (an + but + cat®)(4pt’ + 4nat)” (621)
n=1

where a,, b, and ¢, must be determined. Substituting this into (620) we obtain

I.(K) ~ ao / mIKF() gt 4 b / gm+1IKF() gy 4 o / g2 IKF(t) gy

+ / 3 (6n + bat + cat?)(4pt® + 4nat)"tme KT dt (622)

—oe N=1
where the last term is the remainder of the asymptotic expansion and will be given
by
%2 o
IZK) = / S (an + bat + cnt®)(4put® + 4dnat)"tmeKF O dt. (623)

—eo n=1

If we now define the canonical integral as

Ju(K) = / keI KF(O) gy (624)
(622) is given by
Im(K) ~ aoJm(K) -+ boJm+1(K) + CoJm+2(K) + I'}:(K). (625)

We now want to reduce the canonical integral Jx(K') to a standard form. Making
the variable substitutions

—j2Kna

= B | o) TGS (o)
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and
p = (2K)Y4eur/® (627)

in (624) and deforming the contour of integration back to the real axis we obtain the

integral
eiKf(ze)g€?/2 %

ko= 56+
R / e3P gy, (628)

Ji(K) =

A Parabolic Cylinder function of order —v and argument £ is defined by [47, 48]

2852/4 1 1 212
D)= Ty [P 5 Re) >0, (629)

The canonical integral in (628) can be written in terms of these Parabolic Cylinder
functions. Rewriting (629) and solving for the integral we get

T ooy 1 1 I'(v)e=/4
-1, L+p?)?
[ e = o |

-0

D_.(¢) (630)

which is of the same form as the canonical integral in (628). Using this relation
in (628) we get

r ( k_;‘_l) iKf(zc) €2/4

V27 (k + 1) 7KF (=) f/4
- (k + 1) 20k+1)/2(—j2 K ) (k+1)/4 D—(%L)(f) (631)
if k is even, and
Ji(K)=10 (632)

if k is odd. The double factorial function in (631) is define as
(k+1)1=1-3.5-...-(k—3)-(k—1)-(k+1) (633)

for even k greater than or equal to zero.
From (621) we can solve for ao, by and ¢, by letting ¢ = £, and solving the system

of three equations. This results in the constants

ap = Gn(t.), (634)
Gm tnc - Gm _tnc
o = Gnlae) = Gt (635)
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and

oy = Gmltnc) Gm2(t—2t'm) — 2Gm(tc) (636)

which are in terms of the three quantities Gy (Z,). To find Gm(t) from (619) we begin
by differentiating both sides of (615) with respect to ¢ to get

dz _ F'(t) _ 4pt’ +4nat
& f =) fiz)

This equation is not defined at the stationary phase points because we found z, and ¢,

(637)

by requiring f(Z,) = 0 and F(£,) = 0, respectively. Using 'Hopital’s rule on (637),

dz\?  12ut® +4na
(E) A (638)

it can be shown that

Therefore, at t = ¢, and 2z = 2,

dz 2_ dna  4a
(%)=~ e (639)

Requiring that the path of integration at z = z. remains unchanged by the mapping
(ie., Z >0), ‘
().~
dt ). F(z)
which allows us to write

Gn(t) = 9(20) (%;) (hm — "‘“)m : (641)

t—ic

(640)

Using ’Hopital’s rule to find the limit in (641),

dz m+1 4a —gi
Gm(tc) = 9(z) ("'E)c = g(2) fT(—z—cS (642)
Similarly, at t = ¢, and z = 2,
dz\? —8na
(E)m - fn(znc) (643)

where we must determine sgn {f"(2,c)} to ensure the proper mapping. Expanding

f(2) in a Taylor series around z = z. and differentiating twice with respect to z we
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obtain three equations:

f) ® fE)+ 3G 2+ f M) (644)
£1a) ~ £a)e - 2)+ 5 (a)(e - 2 (64)
fn(z) ~ fn(zc)+%fw(zc)(z—zc)2- (646)

Since f'(zn.) = 0 we can evaluate (645) at z = z,. and equate it to zero and get
% ¥ (2e)(2ne — 20)F ~ —3f¥(z2.). (647)

Next, evaluating (646) at 2z = z,. and substituting in (647) we arrive at

F(znc) = —2f"(2c). (648)
Finally, we have found that
sgn {f"(2nc)} = —sgn {f"(2.)} = —n, (649)
and using this result in (643) we obtain
dz\’ 8a
(%)= me > (650)

Requiring that the path of integration at z = z,,. remains unchanged by the mapping

(i-e., Z—f > 0),
dz 8a
£).H7
which allows us to write

fnizm) (==)". (652)

This is the final item required for the uniform asymptotic expansion.

= g(znc)

The leading term of the uniform asymptotic expansion is found by substitut-
ing (631), (634) and (642) into (625) such that

9(z) v2r (m+ 1)1 eIn(m+1)x/4 3K §(z)
c IKfil(zc)I(m+l)/2 m+1

x {em 1D (6)} (653)

Eng (K) =
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where ¢ is defined in (626). Since m is an even integer that is greater than or equal
to zero, m + 1 is an odd integer that is greater than or equal to one. From (632),
Ji(K) = 0 for odd k; therefore, boJm41(K) = 0. This means that the second term
of the uniform asymptotic expansion is zero. This is a result of the fact that the

stationary phase points are equally spaced. The third term in the uniform asymptotic

expansion is determined by substituting (631), (636), (642) and (652) into (625)

V2r (m+ 1! o mt1ye/a K (ze
coJmi2(K) = g(zc)le“(zc)l(m-H)/? — gin(m+1)x/4 oJK f(z)

X {m;- : gom-1/2 efz/“D_(%a)(f)}
2r
K f%(2nc)

x {(—1)'"/22—;?-(%% e-e’/‘*p_(%ﬁ)(g)} (654)

+ 2 (2ne — 2)"9(2nc) ¢%/4 K (ane)

where ¢ is again defined in (626). The terms can now be regrouped and transition

functions for the central and non-central stationary phase contributions defined as

T(¢,m) = ¢Em+0/2¢8 D_(m41(€)

+ MELemenrz@ip L) (655)
2 ( 2 )
and
1" ,
Tnc(ﬁv"hm) = (—1)m/2_2:;'1(-(%');(tn_]-;)1;_./3 5'5 /4D—(l"-§t§)(£)v (656)

respectively. Therefore, the uniform asymptotic expansion of In(K) is
V2r m+ 1)!!

I.(K) ~ g(z) - 1)/ ( )

K (2e)| (™42 m +1

+ 2 (znc - ZC)mg(zm) E}%%;w—)

+ IN(K). (657)

ein(m+1)x/4 5K (‘°)Tc(£, m)

e—J'mr/4 K F(zne) Tm( f, 7, m)

The transition functions are used to correct the non-uniform stationary phase con-
tributions from the central and non-central stationary phase points. The inclusion of
these transition functions properly accounts for the three nearly coincident stationary

phase points.
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3 A Uniform Asymptotic Expansion Using the
Classical Stationary Phase Technique

One of the drawbacks of the expansion developed in Section 2 is that when the
non-central stationary phase points are complex, g(z) may be an extremely difficult
function to evaluate at the complex point z = z,.. Therefore, it is advantageous to
derive an alternate uniform asymptotic expansion in this region. As explained earlier,
if 4 and 7 both have the same sign, f(z) has one real stationary phase point and two
complex conjugate stationary phase points. When this is the case, we can expand

G (t) in a Maclaurin series around ¢ = t, = 0. That is, let

Galt) = ;_%Gn'(m
= GO0)+ GVt + - G(Z)(O)t2+):G (0) (658)
n=3
Substituting this into (620) we obtain
In(K) ~ GO(0) / tmeIKF( g 1 GW)(0) / tm+1eiKF () gy
+ %Gﬁ,’:’)(O) / tm2edKF(t) gt
+ &0 G(n)(o) / g K gy (659)

n=3
where the last term is the remainder of the asymptotic expansion and will be given

by

oo oo (n)
I’}:(K) Z G (0) /tm+n eI KF () ds — Z Gmn|(0)Jm+n(K) (660)
n=3 n=3

and Ji(K) is the canonical integral defined in (624). Since Jy11(K) = 0 as explained

in Section 2 we get

In(K) ~ GON(0)Jm(K) + %Gg)(O)JmH(K ) + I(K). (661)
Also from Section 2, we recognize
©) dz\ ™" =
GO0) = Catt) = o) () = o7 (662)
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and note that the leading two terms of this expansion are identical to the leading
two terms of the expansion presented in Section 2 since ap = Gm(tc). Therefore,
it remains to find G®)(0). Differentiating (619) twice with respect to ¢ and using
I’Hopital’s rule, it can be shown that

o) = o (%) +ermrea (%) (5),
e ()0 (5) (),
+ (1+ 3) (zc)(dt) (‘Zj) . (663)

The differentials in (663) are determined by successively differentiating (615) with
respect to ¢ to get:

f(2) = pt* + 2nat®> + b (664)
fi(2) (j—i) = 4pt® + 4qat (665)
(=) (E) +f(2) (%) = 12pt* + 47a (666)

(&) s (8) (&) (5) e om

() (-‘3;) +o7(2) dt) (%)
b€ B + o)

" Evaluating (666) at z = 2. and t = t. = 0, and recalling that f'(z.) = 0 we find

(&).- 7w

which is the same as (640) in Section 2. Next, evaluating (667) at z = 2. and
t = t. = 0, and recalling that f!(z) = f™(z.) = 0 we find

(%‘23) = 0. (670)

(669)
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Lastly, evaluating (668) at z = 2, and ¢t = ¢, = 0, and recalling that f'(z.) =
F™(2;) = 0 and (670) we find

@).&) o Fm @) e

Therefore, substituting (669) through (671) into (663) we obtain

GA(0) = ¢%(z) 4o = + g(zc) _f4a i (:f_"“_ﬁ)
m c fu(zc) c fn(zc) 12
3| Kf(z)l  Kf™(z)
"{ T Kf"(zc)} (672)

where ¢ is defined in (626). Finally, substituting (631), (662) and (672) into (661)
and simplifying, the uniform asymptotic expansion of I,,(K) is

\/2—7;. (m+1)" m(m+1)x 1K f(z
In(K) ~ o) gpagoimmn myy L Em)

/o noo. ;
211{]24((?)@;3/2 IS/ GIKICIT, (¢ m, + 2)

v o) Vor(m+ D! oimisyesa k(e (.?’_i_’ﬁ)
2K () [+ 12

3IKf (2)  Kf™(z) _ .
g { €12 Kfu(z) } T(m+2)+ I(K)  (673)

where the transition function is defined as

+ 9%(z)

T,(¢:k) = €502 14D (1)(6) (674)

with ¢ being given in (626). It is important to recall that this asymptotic expansion
is valid only if f(z) has one real stationary phase point and two complex conjugate
stationary phase points (i.e., g = 7). Again, the transition function is used to cor-
rect the non-uniform stationary phase contributions when the three stationary phase

points are nearly coincident.

4 Verification of Uniformity

In order to show the results in Sections 2 and 3 are uniform, two things must be

shown. First, it must be shown that the uniform asymptotic expansion in Section 2
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and the uniform asymptotic expansion in Section 3 are approximately equal near the
point where the three stationary phase points coalesce. Second, it must be shown
that these asymptotic expansions give a bounded result near the point where the
three stationary phase points coalesce. This includes the fact that in the limit as
|f™(2.)| = 0, both expansions must reduce to the known result for an integral with
a third-order stationary phase point.

It is a simple task to verify the first of these conditions. The first two terms of
each expansion are identical since ag = G'9)(0) and the second term in each expansion
is zero as pointed out in Section 3. Therefore, it remains to be shown that the third
term of each expansion is aﬁproximately equal when z,. & z.. To show this, we
recognize that in the limit as zn. — 2. the constant ¢ in (636) is proportional to the

limit form of the second derivative of G (t). More specifically,
o 3 GO0) (675)

for z,. ~ z.. It is now easy to see that this agrees with the third term in the Maclaurin
expansion of G,,(t) used in Section 3. Therefore, if z,. & z. the uniform asymptotic
expansion developed in Section 2 reduces to the uniform asymptotic expansion devel-
oped in Section 3.

The expansion in Section 3 must be bounded for z,. ~ z to verify the second
condition. We must determine the small argument form of the argument of these
transition functions since the transition functions are used to correct for the nearly
coincident stationary phase points. We begin by evaluating (644) at z = z,. and

recombining terms to obtain

Flome) = F(22) % o f ™ (2o = 2+ 5 (e — 2f (676)

for 2, = z.. Next, since f*(2,.) = 0, we evaluate (645) at z = z,. and equate it to

zero to obtain

N —6f n(zc)
‘(ch —z) ) (677)
which is substituted into (676) to get
I 2
1f(2ne) = f(2)] = -2—%-}% (678)
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Finally, substituting (678) into (626) we end up with

¢~ |KS "(zc)l\/,—k—f%m eilu=20)e/4 (679)

which is the small argument form of the argument of the transition functions. This
result is identical to the transition function argument used in [12].

The transition function in (674) can be approximated now that an approximation
of £ has been obtained for f"(z,) — 0. An approximate form of the transition

function is found by substituting (679) into (674)
' kt1

3 E I
T,(¢, k) ~ |Kf%(z)*+t1/2 [__________] gin(k+1)7/8
(£ ) I f ( )I IKfIv(zc)l
Xe—jﬂ(k+1)1r/4 352/4 D_(h%;)(f) (680)

where the approximate form of £ given by (679) is to be used in this equation. This

result can also be used to show

3IKf"(z)  Kf™(z)
- ~ 1

e - K=o (4
which implies that the last term in (673) corrects for the slope near the point of

coalescence. Using this fact and the approximate form of the transition function

given by (680), (673) can be approximated for small ¢ as

~ qlz T (m + I :
I.(K) g( c)\/2— m+1 [IKfIv(zc)I

x e?Kf(ze) gt?/4 D_(zl.%t;l_)({)

! ejy(m+1)1r/8

] m+1l

m+43
T 3 ry )
+ g%(z) \/ E(m + 1)1 [m] gin(m+3)r/8
xeHIE) €D (s y(€) +IN(K)  (682)

which is valid for f%(z.) — 0. It is easy to see that for small ¢ this is a bounded

result. Therefore, the final condition to be shown is that for { = 0, this reduces to

the known solution for an integral with a third-order stationary phase point.
Referring to Appendix C, it is a simple task to show that

VT . (683)
9(k+1)/4T (&4&)

D) |, = D(ap)(© =
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Therefore, substituting (683) into (682) we obtain

V2r (m+1)!![ 3 ri*‘
(28] (m+1) [FKF()

Im(K) ~ g(zc)r

w i(m+1)7/8 giK f(zc)

V2 (m+1)!![ 3 ]m_“ﬂ
r(=s) 2 [20Kf%(=)

+ 9"(z)
x gih(m+3)n/8 giKf(zc) 4. TR(K) (684)

which is recognizable as the first two non-vanishing terms of the asymptotic expansion

for an integral with a third-order stationary phase point.
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Appendix C

Parabolic Cylinder Functions

An efficient means of calculating Parabolic Cylinder functions is required when ex-
-amining the field near the cusp of a caustic caused by the coalescence of three equally
spaced diffraction points. This appendix contains definitions, a series formula, large
argument formulas, relationships between certain orders of Parabolic Cylinder func-
tions and modified Bessel functions and other useful properties.

A Parabolic Cylinder function can be defined as the solution of the differential

equation

d’u 22
E—(a-l'z)uzﬂ (685)

which has four linearly dependent solutions
U= D_(a11/2)(2); D-(a41/2)(—2), Da-1/2)(72); D(a-1/2(—3z)  (686)

as defined in [49]. The standard solution used here is taken to be the first of these
which has an integral form [47, 48, 49, 50]

6—22/4 <

D_ariyn(z) = F(;?-j/ oD emi o (687)
2/ 0
2622/4 7 1 212
= —— / 12 e72(=+)" gy (688)
I‘ (a. + 5) 4

for Re (a + %) > 0. It is easily seen from the integral form of the solution that
Parabolic Cylinder functions contain the proper form to be used in the study of the
field near the cusp of a caustic caused by the coalescence of three equally spaced

diffraction points.
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From [50] the series form of the Parabolic Cylinder function is

i VT

D_(a41/2)(2) =

(20+1)/4I‘( ) n(ze) - (2a—1)/4]_-( ) y2(2,0) (689)
where
ni(z,0) = ZAz,, @) (690)
n=0 )
and

2n+1

y2(2,a) = §32n+1(2 1)

are two auxiliary power series. The coefficients of y1(z,a) and y2(z,a) can be calcu-

(691)

lated recursively using

A =1 (692)
A, = a (693)
2n — 2)(2n —
A = aAam2 +( z L( n—3) Aon-s (694)
and
B = 1 (695)
By = a (696)
2n —1)(2n -2
Binyn = aBan +( z L( d )an—s, (697)

respectively. A useful quantity that can be obtained from this series is

VT
9(2a+1)/4T (_21:_3)

D_(a41/2(0) = (698)

for z = 0. Although this series is an exact solution, it becomes computationally inef-
ficient if |z| becomes large. Therefore, it is best used to calculate Parabolic Cylinder
functions if |z| is small.

If |z| is large, asymptotic expansions of the Parabolic Cylinder function can be
used. From [49] with |z| > 1 and |z| > |a + |, the asymptotic series must be
divided into three separate regions depending on the argument of 2. Therefore, as

given in [49] the asymptotic series of the Parabolic Cylinder functions are

D_(as1/2)(2) ~ €7 42742 5 (2,a) (699)
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for |arg(z)| < ¥,

D—(a+1/2)(2) ~ e F4pm(e41/2) Sc(z,a')
. _Naer var e-j(24+1)1r/2 ez2/4z(a—1/2) Snc(z,a) (700)
P(a+3)
for £ < arg(z) < 3% and
D_(at1/2)(2) ~ e~ 11— (a+1/2) Se(z,a)
_ V2T iatn)e/2 24 yfam1/2) Snel(z,a) (701)
r (a + %)
for 3 < arg(2) < Z=. All three of these asymptotic formulas are written in terms of
the two auxiliary asymptotic series
00 a+ 1
Se(z,a) =Y _(-1)" L__?L_g (702)

(2n)!! z2n

n=0

corresponding to the central stationary phase point contribution and

Suemy= 5 C2t ) (703)

(2n)!! 227

corresponding to the non-central stationary phase point contributions. These series

n=0

contain the function
@)n=z-(2+1)-(+2)-...-(z+2n—-2) - (z+2n - 1) (704)
with (z)o = 1 and the double factorial function defined in [33]
(2! =2-4-6-...-(2n — 2)-(2n) (705)

with (0)!! = 1. These asymptotic series can now be used to calculate Parabolic
Cylinder functions with large arguments.

The relationship between modified Bessel functions and certain Parabolic Cylinder
functions may be useful due to the abundance of computer subroutines for accurately
calculating modified Bessel functions. In particular, the Parabolic Cylinder function
can be written in terms of modified Bessel functions [50] for integer values of a.

Therefore, for a = 0 and |arg(z)| < %,

D_ijp(z) = \/%Kl,,; Gf) (706)
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and

Z 1 1 1
D_ypo(-2) = Vo [\/511/4 (’4'22) + ;K1/4 (Zzz)] (707)
where I,(z) and K,(z) are modified Bessel functions of the first and second kind of

order p and argument z, respectively. For computational purposes, if |z| ~ 0,

N

D_y5(0) = e = 1.216280215 (708)

can be used. Also, for @ =1 and |arg(2)| < %,

D_3/5(2) = z\/—% [K3/4 (i—z2> — K4 (i—zz)] (709)

and
st = i) )
+ \/_W [K3/4(1 )+K1,4 (Ili"z)]} (110)

where the modified Bessel functions are defined as before. Again, for computational

purposes, if |z] ~ 0,

4T
D_sa(0) = - Fr (1) = 1.162736634 (711)

can be used. The recursion relation [49]
1

.D,,(Z) = V_-i-—i

should be used to obtain all other Parabolic Cylinder functions with orders that are

Dy1(2) - D, 12(2) (112)

integer multiples of these in order to reduce the computation time. It is important to
note that this recursion relation is valid for all Parabolic Cylinder functions regardless
of order or argument. Another important property that can be exploited in the
computation of Parabolic Cylinder functions is

D,(z") = D;(2) (713)

which can be used to limit the scope of computations.
As examples, two Parabolic Cylinder functions of different order are presented.

These correspond to those required for the uniform asymptotic expansion developed
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Figure 71: This is a plot of a Parabolic Cylinder function of order — 0.5 (i.e., a = 0)
and argument z = te’™/4,

in Appendix B. Parabolic Cylinder functions of argument z = te’™/4 and orders

-1

and — 2 are shown in Figures 71 and 72, respectively. It is important to note
2 2 gu P

that all the Parabolic Cylinder functions required for the calculation of the transition
functions in Appendix B can be obtained from these. These two results can be used
in conjunction with the recursion relation in (712) to obtain the necessary order since
the orders of all the Parabolic Cylinder functions are integer multiples of — % Also,
the conjugate relation in (713) can be used to obtain the proper argument since the

argument of transition functions are restricted to arg (¢) = +£%,+%.

232




10
1)

Real Part

-

-------- Imaginary Part

=

)
0
0
-10

t

233

-10
Figure 72: This is a plot of a Parabolic Cylinder function of order —1.5 (i.e,a

and argument z = te?™/*.



Appendix D

The Geometric Interpretation of
the Phase Function, Diffraction
Parameter and Half-Plane
Diffraction Coefficient Derivatives
Required for the Uniform
Asymptotic Expansion of the
Diffracted Field Integral

Equations

Any asymptotic expansion depends on the derivatives of the phase and amplitude
functions of the initial integral. These derivatives can be performed on an integral
obtained for a specific problem, but they may be difficult to write in a geometry
independent form. To alleviate this problem, these derivatives can be performed
on general expressions using differential geometry. This appendix is devoted to the
differentiation of the phase function, diffraction parameters and half-plane diffraction
coefficients required for the use of the uniform asymptotic expansions derived in

.Appendix B.
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1 Phase Function Derivatives

The first few derivatives of the phase function are required for both of the uniform
asymptotic expansions of Sections 2 and 3. The second derivative of the phase func-
tion evaluated at the central and non-central stationary phase points are required for
the expansion in Section 2. The second and fourth derivatives of the phase function
evaluated at the central stationary phase point are required for the expansion in Sec-
tion 3. This section is a derivation of the second and fourth derivatives of the phase
function evaluated at the central stationary phase point and the second derivative
of the phase function evaluated at the non-central stationary phase points. This is
accomplished using differential geometry.

This derivation begins by writing the phase function in terms of some geometric
parameters of the edge. This geometry is shown in Figure 73 and ! is defined as the
arc length along the edge from the origin to the diffraction point Q'. It should also
be noted at this point that all derivatives in this section are performed with respect
to arc length unless stated otherwise. The phase function of the diffraction integrals

is

h(l) = —r(Q") — ra(Q") (714)
where,
(@) = {[B+7@)] 8 +{[E+7@)] 2@}
+ {[E+ @) 2@} (715)
and

- - -~y 2 - - - 2
(@) = {[Ra-#(Q)] -8} +{[Fa-7AQ)] 7@}
. . 2
+ {[R:-7(@)]-2@)} - (716)
The parameters that are a function of arc length will be denoted by @' to obtain a
result that is consistent with the UTD. This will allow us to evaluate the results at

different diffraction points and easily distinguish between them. The phase function
itself will be left as a function of arc length to be consistent with the integral equation
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Source

n,(Q)

Figure 73: Geometric parameter definitions for the phase function derivatives of the
diffraction integrals.
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it came from. The chain rule will be used to differentiate these expressions; therefore,
the derivatives of 7i.(Q’), €(Q’) and 7.(Q’) are performed first. The derivatives of the

unit vectors 7.(Q’) and €(Q’) are known as the Serret-Frenet equations [51] and are

e(Q") = xo(Q") Re(Q) (717a)
(@) = —ry(Q) (Q) (717b)

where £,(Q’) is the curvature of the edge at a point, @', of arc length I away from
the origin. The first derivative of the position vector, 7.(Q’), from the origin to the
diffraction point is :

(@) =-2(Q) (718)
from the definition of the tangent vector €(Q’). By successively differentiating (718)

and using the Serret-Frenet equations (717), we obtain the next five derivatives of the

position vector as:

7o (Q) = —8(Q) = —rs(Q) 2e(Q) (719)

Q) = —rg(Q) Ae(Q') — £o(Q) 7e(Q)
= —k(Q) 7(Q") + 55(Q) E(Q") (720)

Q) = —kMQ)A(Q) - K)Q)RAQ)
+25,(Q)r1Q) E(Q) + £X(Q) E(Q)
= —[s2(Q) - s3(Q@)] 7e(Q) + 30(@)x3(@) 2(Q)  (721)

Q) = —sI(Q) 7(@) — £HQ) ALQ) + 3x2(Q)x3(Q) 7e(Q)
+r3(Q) ANQ) +3{s 1@} E(Q)
+3r,(Q)r Q") 2(Q") + 3%,(Q)rH(Q) 2X(Q")
[652(Q")%3(Q") — 5™M(@")] 7e(@)
+ [45,(Q)RHQ) — KH(Q) + 3{x 2 QY] (@) (722)

Q) = =5 (Q) R(Q) — 1 (@) Re(Q) + 480(Q)r5(Q) E(Q')
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+4rg(Q)RI(Q) (Q) +4ro(Q)(Q) E1(Q)

+125(QHR2(Q) P el Q') + 652(Q)RI(Q") e(Q')

+6r2(Q")s3(Q) 7H(Q") - 4s3(Q)Re(Q) E(Q)

—r3(Q) Q") + 65)(Q)r1(Q) E(Q) + 3{r 3 (@)} €' (Q")

= [10s2(Q)r2(Q) — K3(Q) — 51 (Q) + 155, (Q){{s2(Q)}] 5e(Q")

+ [5ra(@)(Q") + 106 X(@)(Q")

— 1053(Q")%5(@)] 2(Q") (723)
Next, we wish to evaluate these derivatives at the central and non-central diffraction
points. The central diffraction point, Q., is located at the origin of the coordinate
system shown in Figure 73. Also, £}(Q.) = 5;"(Q.) = 0 due to the symmetry of the

assumed geometry. Therefore, the derivatives of the position vector evaluated at the

central diffraction point are:

(@) = 0 (724a)
7e(@c) = —2(Qc) (724b)
7o (Qc) = —rg(Qc) Re(Qc) (724c)
Q) = Q) E(Q) (724d)
Q) = —[r(Qe) - KQ.)| (@) (724e)
Q) = —[rQc) — 455(Q)rF(Q:)] E(Qe) (724f)

Q) = —[K(Qc) — 1082(Q)RJHQ:) + K3(Q0)] (@) (724g)

The non-central diffraction points, @,., are assumed here to be located at an arc
length of I = [, from the origin of the coordinate system. Therefore, the derivatives

of the position vector evaluated at the non-central diffraction points are:

Te(@Qnc) = —€(Qnc) (725a)
T (@ne) = —Kg(Qnc) Be(Qnc) (725b)

where only the first two derivatives are required by the uniform asymptotic expansion

in Section 2.
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The first derivative of 7;(Q’) can now be derived by differentiating both sides
of (715) with respect to arc length [ as

(@) }@) = 2{[E:+7(@)] -3} {7(Q) B}
+ 2{[R:+7(Q")] - 2@} FHQ) - 3(Q)
+ [B+7(Q)] - 72Q)}
+ 2{[F+7Q)] - 2@} @) -2(@)
+ [B: +7.(@)] - 2@} (726)
where, by using (717) and simplifying, we obtain
r(@)(Q) = {[ﬁ: + ﬂ(Q')] 3} {F:(Q') 3}
+ {[B+7AQ)] - R @)} Q) - 2(Q)}
+ {[R+7(Q)] - s(@)} {7HQ) - 2(@)}- (727)
Following a similar procedure, the first derivative of 74(Q’) is
ra(@13Q) = —{[Fa-7@)] B} {7I(@)-F}
—{[Ra- (@) - 2@} FHQ) - 2@}
—{[R-7Q@)] - 2@} Q) 2 @)} (729)

It is now a simple task to show that the first derivatives of 7;(Q’) and r4(Q’) are
ri(Qc) = 4(Qc) =0 (729)
at the central diffraction point and
7{(@nc) = — cos B, (730)

and
T;(Qm;) = Cos ﬂnc 3 (731)

respectively, at the non-central diffraction points.
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Next, the second derivative of 7;(Q’) is determined by differentiating both sides
of (727) with respect to arc length,

FHQ) + (@) P(Q) = {7HQ) B + {[F +7(@)] -3} {7(@) -5}
+ {FHQ) 7@ + {[Bi +7AQ)] - AXQ)HFHQ) - 7l @)}
+ {[B:+7(Q)] - 2(@)} {FNQ) - 7l @) + 7(Q) - 22(Q")}
+ {FAQ) 2@ )Y +{[E:+7(@)] - (@)} {FAQ) - 2(@)}
+ {[B+7(Q)] - 2@ }FR@) - 8(Q) +7XQ) -2 (Q)}  (732)

where, using (717) and simplifying, we obtain

FAQN + n@W @) = {FA@) B} + {7(@) - 2@
+ {F(Q)-e(@)Y
+ {[B:+7(@)] -8} {#1(Q") - B}
+ {[B +7(Q")] - 72(@)} {FHQ) - 7@}
+ {[B+7@)] €@} FHQ) - 2@} (733)
Following a similar procedure, we obtain
FAQ) + (@1 d(@) = {7H@) B} +{7H@) - 2(Q)Y
+ {FHQ)-E(@)}
— {[R:-7@)] -8} {7 @) -3}
= {[Ba—7@)] - A(@)}HTHQ) - 5@}
~ {[R:-7(@)] - €(@)} FNQ) - E(@)} (734)
as the second derivative 74(Q’) with respect to arc length. Evaluating (733) at the

central diffraction point,

I 1 5 o~ R ‘ E(Qc) ’
T (Qc) = E - K’!](Qc) [R1 'ne(Qc)] - ‘[—"—ﬁ:“—] (735)

where, for a plane wave incidence (i.e., R; — o) and R;. fie(Qc) = cos .,
Q) = —ro(Qe) [Ri - 5e(Qc)] = —ro(Qc) cos Y. (736)
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Also, evaluating (734) at the central diffraction point,

& B,-200)
(@) = 2+ (@) [Re Q)] - [Ra-2Qa)]

and since Ry - 7.(Q.) = — cos 9. and Rs-2(Q.) =0,

3(Q2) = 1 = Rol@2) con

Evaluating (733) at the non-central diffraction points,

P B (@re) = i — y(@ne) [8" Ae(Quc)] —

where for a plane wave incidence (i.e., 8; — 00)

riH(QﬂC) = _ng(an) [3’ * ﬁe(an)] .
Also, evaluating (734) at the non-central diffraction points,
5-8(Qn)
] - [5- 8(@nc)]

1 S
rdn(QﬂC) = + Kg(Qne) [5- Tie(@ne
Snc 8nc
and since 8- €(Qn.) = cos B, we get,

sin? B

3nc

73 (Qnc) = + #g(@nc) [+ e(@ne)] -

This completes the derivation of the second derivatives.

[3, : E(an)]z

(737)

(738)

(739)

(740)

(741)

(742)

The third derivative of (715) is found by differentiating both sides of (733) with

respect to arc length

QIR + n(@)r™(Q)=3{FQ)- B} {7(@) T}

+ 2{7(Q) - 2(QVH7(Q) - 7(Q) + 72(Q") - R (@)}
2{7e(Q) - 8(@)}H7(Q) - 2(Q) +7:(Q) - e'(@)}

B +7(Q")] -3} {#™(Q) -3}

+
+
+ 37
+
+
+

i+ 7(@)] - 2(@)} 7M@) - 2(Q)
+H(Q) - E(Q)}
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FHQ) - 2(Q) + [Ri +7(Q")] - (@)} HFNQ) -2 (@)}

{

{FH@) - 7(Q) + [Ei + 7(Q)] - AHQHFQ) - 2@}
{[Bi +7(@)] - 2(@) }HF™(Q') - (@) + 7(Q") - 22H(Q)}
{
{

(743)




which, using (717) and simplifying, results in

Q) Q) + r(@)r(@) =3{FXQ)- B} {F(Q) -5}
+ 3{7(Q)  B(QVHFNQ) - 7e(@)}
+ 3{7(Q) - (@ )HFNQ) (@)}
+ {[E+7(@)] -3} {7F™(@) - B}
+ {[E +7(Q)] - 5@ }HF™(Q) - 7.(@)}
+ {[B+7@)] 2@} F@) -E(@)}.  (144)

Following a similar approach, the third derivative of 74(Q’) is

+ ra(@)r(Q) =3{7X(@)- B} {F(@" - B}
+ 3{FHQ") - A(QVHFHQ) - 5e(Q)}

+ 3{F(Q)-E(@)}HFNQ) - €@}

~ {[R:-7@)] -3} {F™(@) - 3}

— {[Bs - 7(@)] - 2@V HF(Q') - (@)}

— {[Ra—7(@)] - €(@)}HF™(Q) - £(Q")} (745)

3r3(Q)r4'(Q")

with respect to arc length. Since we only need the third derivative of the phase

" function at the central diffraction point,
rHQc) =74 (Qc) =0 (746)

which completes the required third derivatives. Now only the fourth derivative of the

phase function must be found.

Finally, the fourth derivative of (715) is found by differentiating both sides of (744)
with respect to arc length

M@ + 4n{(Q)rI(Q) + (@)@ =
3{7(@) -8} +4{7(@)- B} {7 (@) -5}
+ 3{FN(Q") - Ru(Q) +7HQ) - RUQNHF(Q) - 7@}
+ 3{FAQ) - A @VHF™@) - 2(Q) + Q) - RHQ)}
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+ 3{FHQ)-8(Q) +7HQ) - E@HTNQ) -2 (Q)}
+ 3{FNQ)-E(@)HF™(Q) - 2(Q) +7(Q) - e(Q)}
+ {[E: +7@)] -3} {7(Q) - B}
+ {FHQ) 7@ + [Bi + 7(Q)] - AHQ)}HF™(Q) - 7@}
+ {[E +7(@)] - 2@ )}{r:W(Q) ne(q')mﬂ(cy) 22(Q")}
+ {FHQ)-2(@) + [B: +7(Q)] - (@) 7M@) -2(Q)}
+ {[B+7@)] - 2@} 7 (Q) - 2(@)
+(Q") - 2(Q)} (747)

4]

where, after using (717) and simplifying, we obtain

QN + 4} @)yM@)+m(@)(Q) =
3{7M@) -8} +4{7@) B} {7™(@) -3}
+ 3{FQ) - 2@} + 4{FHQ) - 5(@)}HHFI(Q) - 7e(Q")}
+ 3{FNQ)-2(Q)) +4{F(Q) - e(@}HTQ) -2 (@)}
+ {[B +7@)] - B} {7 (@) -3}
+ {[B +7(@")] - 2@ }HFM (@) - 2:(Q")}
+ {[B+7@)] - 2@} 7M@) -2 (@)} (748)

Following a similar procedure on (745) we obtain

3rf (@) + 4ri(Q)rd(Q) + (@) (@) =

3 (7M@) -8} +4{7@) -8} {7™(@) -3}

3{FI(Q") - 2(Q)Y + 4{FHQ) - 7e(@VHT(Q') - 7e(@")}
3{FQ) - E(@)F +4{FNQ) - e(@)HFM(Q) - (@)}
{[Ba-7@)] - B} {7 (@) -3}

= {[Ra—7(@)] - (@) }HFM (@) - 2(@)}

= {[Ra- Q)] - €@} 7T (@) - 2(@)} (749)

+ +
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as the fourth derivative of 74(Q’). Again, we only need the fourth derivatives at the
central diffraction point. Therefore, at the central diffraction point

T:’W(QC) = - [K';I(Qc) - g(QC)] [ e(Qc)] - (Qc - 'i[rin(Qc)]z

(Qc

= [RQ2) — K3(Q2)] cos . — 22 [1+3 cos’ /] (750)

where, for a plane wave incidence (i.e., R; — o0) we get

Q) = — [5(Qc) — K(Q)] cos . (751)
Also at the central diffraction point,
Q@) = [0~ (@) [Ra-@)] - B2 2 pmgy
= - [r(Q.) - K3(Qc)] cos g ~ (?“)
2L - m@)eoss] (752)

This completes the required derivatives for the determination of the necessary phase

derivatives.
- Finally, the derivatives of the phase function (714) can be determined using the
derivatives of 7;(Q’) and 74(Q’) evaluated at the diffraction points. First, the deriva-

tives of the phase function at the central diffraction point located at [ = [, are:

h(l)) = -s (753a)
R{(l.) = 0 (753b)
AU = —o -+ my(Qu)fcos e + cos ]

1 1
- [E i p"(Qc)] (7530)
hIII(lc) — 0 (753d)
2
B0 = [531Q0) ~ K@) loosth+ coss] + T2
3 8. €os 7P 2
— |1 -==—I= 753e
e (753)
where the radius of curvature of the edge at the central diffraction point is
1
9= 5 (154
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and

_ —pg(Qc)
pd(QC) - cos ¢c + cos 1/}‘,: (755)

is the second caustic distance of the central diffracted field. Also, the derivatives of

the phase function at the non-central diffraction points are

hla) = —5'7@ne) — (7562)
h'(l,.) = cospf,. —cosfn.=0 (756b)
RY(L) = — sin’Bn.  [§ 3]  Fie(Qne)

( ) Snc Pg(an) _
= —sin’Bn [-L + ——1—] (756¢)
Snc Pd(an)

where

Po(@nc) 5in Bnc
[3 - 3,] ) ﬁe(an)
is the second caustic distance of the non-central diffracted field. This completes the

P (Qne) =

(757)

derivation of the phase function derivatives.

It is advantageous at this point to derive the relationship between the derivatives
with respect to ! and the derivatives with respect to the x direction, z.. To accomplish
this, we note that h(z.) = h(l) and successively differentiate with respect to z. on

both sides to obtain:

h(z.) = A(l) | (758a)
hi(z) = I(z)( ’) (758b)

)+h‘ ( dzz) | (758¢)
) o (2) ()

+h'(1) ( ) (758d)

R (1) (‘ﬂe) +6R™(1) (dle) (f;lf)
+3R7(1) (ﬁé)2+4h“(l) ( l) (ﬁls)
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Vi) = B0 (2

hIII(ze) — hIII (

hIV(ze)




+RY(2) ( d:ﬂ) (758¢)

e

e - o (&) - (2] ()

o () (5 v (2 (2)
wonn) (2) () +500 () (Z3)

+h'(1) (ﬁi) >
e = w0 () oo () (2)
+45h”(’)( ze) (fi) 20hw(l)( ) ( )
+60h’“(1)( )(dﬁ)( ) o0 (52
) )
)

(&) <m0 ()
) (758g)

3
Te
3

dz
!
:

+15R (1) (

(£)+n0 (£)(2)

+15R7(1) (

0 (53

where the differentials must now be determined. To do so, we begin by determining

the edge vector as
P
2(@) = ==L (759)

which allows us to take the dot product with Z to obtain
1

—5'?(Q)=m-

Using this result and the definition of the first differential, we find

dl _ V14 @) = -1 (761)
dz. z-e(Q")

This can now be successively differentiated to find the remaining differentials as

ﬁ = —x (0 Z-7.(Q) a
dzg Q(Q ) [5 . E(Q')]a (762 )
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a3l
dz3

(@) ——7=

- *(Q')]

[“’ 7e(Q' )]

Q) G eF

i@ 2o2Q) (762b)

Z-2@)

where the Serret-Frenet equations of (717) have been used to simplify the results.

Although only the first three differentials are required to transform the phase function

derivatives, the first six are required in Chapter 7. Therefore, differentiating (762b)

three times with respect to z. we obtain

dl
dz,
d?l
dz?
&3l
dz?
dil
dazt

Qe

Qe

Qe

€iQ.

dsl
dz?
d®l

6
dz8

Qe

Qe

at the central diffraction point.

4

1 (763a)
0 (763b)
K2(Qe) (763¢)
0 (763d)

Kg(Qc)ry (Qc) + 9x3(Qc) (763€)
0 (763f)

We can now substitute (753), (761) and (762)

into (758) and evaluate at the central

and non-central

h(z)
hi(z.)
h¥(zc)

R (z,)
b (z.)

h(znc)
h'(2nc)

hn(znc)

h(L.) (764a)
0 (764b)
RU(L,) (764c)
0 (764d)
R (L) + 4r2(Qc)h (L) (764e)
h(ln) (765a)
0 (765b)
R (1) (* " (;m))z (765c)
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diffraction points. One last result that will become useful for the uniform asymptotic

expansion in Section 3 is the ratio of A™V(z.) to A"(z,.) is

h(ee) _ B0
hi(e) — Ra(L) T (@) (768)

which can be used to convert the final result back to the derivatives with respect to

arc length.

2 Diffraction Parameter Derivatives

The second derivative of the amplitude function of the integral is required in order to
use the uniform asymptotic expansion developed in Section 3. This amplitude func-
tion is dependant on the specific integral, but several quantities show up repeatedly.
This section is a derivation of the first two derivatives of these common functions.

An important fact that will be used extensively is that the first two derivatives
of any function with respect to arc length are the same as the first two derivatives
of that function with respect to z. at the central diffraction point. This was shown
in Section 1 for the phase function, but it is true for any function. The equality
of the derivatives with respect to arc length and z. will be stated without further
explanation since all the derivatives obtained in this section are evaluated at the
central diffraction point.

First, if we recognize that » = 74(Q’), we obtain

TIQC = 8 (7673.)
dr dr
— = =0 (767Db)
dily, dze|q,
d*r d*r 1
o = 22| T3 kqe(Qc) cos . (767c)
QC € QC c

from (729) and (738), respectively. Next, we wish to determine the derivatives of
sin B and sin? 8. To accomplish this we begin with

cos B = 74(Q’) - €(Q") (768)
which is a definition of cos 8. This can be rewritten as
ra(Q') cos B = 74(Q") - 8(Q") = [Fa - 7(Q")] - (@) (769)
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which allows us to differentiate using the chain rule to get

ri(@)eosp+ri@) (15

= [Ra-7(Q)] - 8(@) - 7HQ)-2(Q)

= k(@) {[Ra - 7@)] - 7:(@)}
~7(Q)-8(Q) (770)

where the Serret-Frenet equations of (717) have been used to simplify the result.

Again, using the chain rule and the Serret-Frenet equations of (717), (770) is differ-

entiated to obtain

2 @)eoss + (@) (2558 i) (55E) -

= w}(@){[R:-7(@)] - 2:(Q"}

+ r(@) {[Ba - 7(@)] - 2K}

— 5@ {FHQ)  7(Q)}

— Q) -E(Q) - FQ)-EYQ)

= w}Q){[Ra-7(Q)] -7e(@)}

— &A@ {[Ba-7(@)] - 2@}

— m(@){FHQ) - 7e(Q)}

— Q) E(Q) - r(Q){FHQ) - 7@} (771)

which will be used to determine the second derivative of cos 8. Evaluating (769)

through (771) at the central diffraction point, we get:

cosBly, = 0 (772a)
dc;)lsﬂ - d;:ﬁ . _ ;: — Ky(Qc) cos e (772b)
et | el L, i

Using the trigonometric identity, sin? 8 = 1 — cos? §, we can differentiate twice
dSidn:ﬂ = —2cosf (dc;lsﬁ) (773a)
- () e (fR) o
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and evaluate them at the central diffraction point to obtain

sin’ 3 0. = 1 | (774a)
.2 . 2
d“dnl Al . ds;n Bl o (774b)
Q. Te lq.
d?sin’ B d?sin’ B 1 2
@&, = & o = -2 [z — Kg(Qc) cos 'gbc] (774c)

as the derivatives of sin? 8. Also, differentiating sin? B using the chain rule

dsin® 8 _ ) dsin B

¥ = 2sinf ( ¥ ) (775a)
dz « 2 ﬂ d . ﬁ 2 . dz . ﬂ
——sdl; = 2 ( S;Ill ) +2sin 8 ( ;;21 ) (775b)

and evaluate them at the central diffraction point to obtain

sinflg, = 1 (7762)
L (776b)
Q. Te lq. |
d?sin B d?sin B 1 z
@& |, & |, = - L—c — kg(Q.) cos 'gbc] (776¢)

as the required derivatives of sin 3. Following a similar procedure and recognizing

cos B =7(Q') -€(Q’) and R; — oo we obtain

cosfBly, = 0 (777a)
dcos ' dcosf'
B = ISP o (@)eosy! (777b)
Qe ¢ 1Q.
d? cos 3 d* cos B/
e |, - da? 2 =0 (777c)
and
sin? @], = 1 (7782)
2 n2
dm;l B _ ds;n B -0 (778b)
Q. Ze lq.
d? sin? B’ d?sin? B’ "2
|, T T |, ~2[rg(Qc) cos ;] (778¢)
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which can be used to obtain

sin B’ =1 779a
Qe
dsin 8 dsin 8 —o (779b)
dl Q. dze Qc
d? sin B’ d’sinf'| "2
dl2 Q. - dzg 0. - [NQ(QC) cos ‘¢c] (779c)

as the required derivatives of cos &, sin? 8’ and sin 8’ evaluated at the central diffrac-
tion point. The only other common quantity of the amplitude functions are the half-
plane diffraction coefficients. However, these will be determined in the next section

due to the extensive nature of the differentiation of the diffraction coeflicients.

3 Half-Plane Diffraction Coefficient Derivatives

Other common quantities that appears in the amplitude functions of the diffraction
integrals are the half-plane diffraction coefficients. The edges are assumed to be on
flat plates for the purposes of the work. Therefore, the second derivatives of the
half-plane diffraction coefficients are required in order to use the uniform asymptotic
expansion developed in Section 3 of Appendix B. This section is devoted to the
differentiation of the half-plane diffraction coefficients.

As discussed in Section 2, the first two derivatives with respect to arc length
of any function is identical to the first two derivatives with respect to z. evaluated
at the central diffraction point. This fact will be used here as well. The equality
of the derivatives with respect to arc length and z. will be stated without further
explanation since all of the derivatives determined in this section are evaluated at the
central diffraction point.

The diffraction integrals formulated in this work are obtained using the ITD as
discussed in Chapter 4. For this reason, it will be necessary to differentiate the
ITD half-plane diffraction coefficients rather than the UTD half-plane diffraction
coefficients. First, recall that the ITD half-plane diffraction coefficients are

~ . 1[F[kLa(®")] _ FlkLa(¥*
D.4(Q) = 5{ c[os(;z:))] ios(‘g%))]}

251




- %{sec (11'5—-) F [kLa(¥")] F sec (11;) F [kLa(\I:+)]} (780)

where

L=rsin?g (781)

is the distance parameter and

a(UF) = 2 cos? (-‘I;) (782)

is the angle parameter. This must now be differentiated twice in order to use the
uniform asymptotic expansion derived in Section 3 of Appendix B.

Extensive use of the chain rule is employed to accomplish this differentiation. The
differentiation of ¥¥ = 9 F ¢’ will be performed first. We can write cos v as

(@) - 7(Q)
sin B (783)

cosy = —
and it can be rewritten as
ra(Q)sin Beosp = —7u(Q') - 8(Q) = — [Ra ~ 7(Q)] - Re(@Q)  (784)

which allows us to easily differentiate. Now, differentiating both side of (784) with

respect to arc length we obtain

dsin 8

r1(Q)sin Beosyy + r4(Q") ( ) cos v + r4(Q") sin 8 (dcos 1{;) _

= {7(@)-2(Q)} ~ [Re - 7(Q)] -2(Q)

= {7(Q) - 7.(Q)}

+ wg(@) {[Ra-7(Q)] -2(@"} (785)
where the Serret-Frenet equations of (717) were used to simplify this result which

will be used to determine the first derivative of cos 1. Next, differentiating both sides
of (785) with respect to arc length we get

73(Q")sinBeosyp + 2r;(Q') (dsmﬂ) s¥ +2rj(Q')sin B (dcos¢> +
2r4(Q") (dsmﬂ) (dc;;¢) + 7r4(Q’) (d‘:sl;?ﬂ) costp + r4(Q")sin B (dzz):'/)) =
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{72(Q") - 2:(Q"} + {72(Q) - (@)}

+ s} {[Ea— (@] -€(@)} - 5@ {72(@) - 2(Q)}

+ mg(@) {[Ba—7(@)] - 2@}

= {FHQ) - 7@} + s2(Q) {[Ra - 7(@)] -2(Q))}

— 25,(@){7XQ) - 2(Q)}

+ 83(Q) {[Ra—7(Q)] - 7(Q)} (786)

where the Serret-Frenet equations of (717) have been used to simplify this result which
will be used to obtain the second derivative of cos 9. Evaluating (784) through (786)

at the central diffraction point we obtain

cosplg, = cosy (787a)
dcos dcosv ~0 (787h)
d |, dze g,
d? cos 9 d? cosy B sin?v.cosy.  sin’.

77 (787¢c)

o 2@ " wpl@)

which will now be used to determine the derivatives of 4. Using the chain rule, cos 3

Q. T da?

can be differentiated as

dcosyp ) dy
T = sin 9 ( dl) (788a)
& AN L4
——;—;Zzﬂ = —cos (d—f) —sin (%) (788b)
which can be evaluated at the central diffraction point and (787) used to obtain
Ylo. = % (789a)
d d
24 2 =0 (789b)
Q. Zelq.
d*y d*y sin 9. cos Y, sin 1),
—_— = = - 789c¢
d* |, dz? g, PAQc) 8¢ po(Qc) (785c)

as the derivatives of ¢. Following a similar differentiation process as before and

evaluating the derivatives at the central diffraction points

Ve, = % (790a)
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dy’ dy’
@ =0 (790b)
dl Q. dz. Q.
d*y’ dy’ sin ! cos 9. sin 9!
—_ = £ - < 790
a,, T @, T @) EalQ) (790)

where for plane wave incidence (i.e., R; — oo0) we obtain:

¢'|Qc = 9, (791a)
dy’ dy’
bk = =0 (791b)
dl |, dze |y,
d2’ d?y’ sin 9’ cos 9/
- = = — 7€ (791c)
dl? Q. dz? Q. PZ(QC)

Finally, using (789) and (791) in ¥F = 9 F 4’ and evaluating them at the central

diffraction point we get

P = | =g F Y (792a)
duF 4o duF

< = = =0 (792b)
dl dl |, dz. |,
LUF LF| PUF
ez~ de |, = del |,

sin 9. cos P, _ sin 7. M A
{ p_zzy(Qc) 8¢ pg(Qc)} { p?;(Qc) } (792c)

as the required derivatives. Also, the distance parameter L = rsin’ 3 can be differ-

entiated using the results of Section 2 to obtain

dL  (dr\ ., dsin® B
- = (ﬁ)sm ﬁ+'r( 7 ) (793a)

d’L _ er\ . , dr\ [dsin?p d?sin? B
i (Eﬁ-) sin ﬂ+2<§i)( 7 )+r( 7D (793b)

which is now evaluated at the central diffraction point and simplified to get

LIQc = & (794a)
), (794b)
Q. e lq.
1 _ L
&, ~ @,
1 8. cos¢c] 2 [ 8. €OS P 2
= g {—=|[1-="—22-=|1-=—"2L2 794c
{[ @) ) Z [ he) (794c)
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as the required derivatives. The angle parameter a(¥¥) = 2cos’ (‘—I'zi) can now be

differentiated using the chain rule

¥ F F F
da(d\Ill ) = =2 (éj—l—) sin (%—) cos (%—) (795a)
Fa(¥7) _ -2 £ sin LAl cos Ll
az az )\ 2 2
T\ 2
- (%I%—) cos (‘I':F) (795b)
which, at the central diffraction point gives
UF
a(¥F) = 2cos? (Tc) (7962)
¥ F
(V%) _ da(¥7)) _, (796b)
dl Q. dz, Q.
d%a(T7) Pa(¥F)| - d&2vF vF
i . —7;2—— o = a,(\I’c ) - di2 tan D) (7960)

as the first two derivatives. We are now in a position to differentiate the argument of

the Fresnel transition function X¥ = kLa(¥¥). Using the chain rule

dX¥ dL da(¥F)
- = - ¥ —_— 7
a0 k (dl) a(¥F)+ kL ( i ) (797a)
X7 d’L dL\ (da(¥¥)
— —_— F - L
e - k(dzz)“(@ )+2k(dl) ( dl )
d?a(TF) A
+ kL (—dlz_) (797b)
and evaluating these at the central diffraction point and simplifying
vF
XF = X7 0= 2ks, cos® (Tc) (798a)
dXF dX¥T dX¥
dl—  dl Q. — de, Q. =0 (798b)
£XF  &EXF|  PXF
dz —  d? Q. © dx? 2.
1 8. COS Y, 1 8. COS Y. 2
e
{ 232 ps(Qc) 8 pe(Qc)
1 (d?9F vF
() (%)) e
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which are the derivatives of interest. Next, the differentiation of the Fresnel transition

function F[X¥] is to be determined. Using the chain rule
dF[X¥) dX¥ dF[X7]

di ~ dl dXF (799)
which is then differentiated again
#F[XF| &XF dF|X7 L (X7 ? 2 F| X7 (800)
iz diz  dXF dl dX¥?

where it is now necessary to determine the derivatives of the Fresnel transition func-

tion with respect to its argument. To do so, we recall (6) from Chapter 2

[~

Flz] = 2j\/53j’/e'j"2 dr (801)
vz

which is the Fresnel transition function. We must know how to differentiate the
Fresnel integral in order to correctly differentiate the Fresnel transition function.

Using the fact that [50]
d oc
W / F(t)dt = — £(p) (802)

and using the chain rule, the derivative of the Fresnel transition function is

dF[:v] . e’” . iz T —jr2 .
5 = 23[2\/5+J\/a_:e ]‘/ée dr—j
_ Flg ;21".[1’] (803)

with respect to its argument. The slope diffraction transition function is given by
F,[z] =2jz {1 - F[z]}. (804)

Finally, substituting (798) and (803) into (799) and (800) and evaluating them at the

central diffraction point we obtain

FIXT] = Flksa(¥7)] (805a)
dF|XF] _ dF[X7]| _ dF[X7]| _
a T A |, da. QC‘O (805b)
£FXF] _ &LFIXF)|  LFIXF
az T T aE |, T dz? |,
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B Pe(Qe)

1
_ {.2__[1

8. cosz/)c] 1 [1

g2
8C

8. COS 1/)5] 2

- Pe(Qc)

L& ) an (‘—I;—)} (FIXF)- FIX7]}  (8050)

as the derivatives of the Fresnel transition function with respect to arc length. Now,

differentiating the secant terms in the half-plane diffraction coefficients using the chain

rule,
dsec (LF) 1 /du+ oF TF
= 3 (7) sec (—2—) tan (—E—) (806a)
d® sec (?) _ 1 (duF LAY uF
a2\ ae )\ )"\ 2
L L(EN (e
A sec | - ) tan” | 5
;'
+ sec? (‘I’T)} (806Db)
where evaluating these derivatives at the central diffraction point we get
F F
sec (%—) = sec (_‘I;L) (807a)
Q.
dsec (-‘I;—:F-) dsec (?)
— | = 2 =0 (807b)
Qe ° e
d? sec (g) _ d? sec (!zi)
dr2 dz?
Q. Qc
UF\ (1 (d?¥F UF
= sec(2){-2—( 77 )tan(z)} (807¢c)

which finally allows us to differentiate the half-plane diffraction coefficients using the
chain rule.

We are in a position to differentiate the ITD half-plane diffraction coefficients
in (780) since we have differentiated the secant terms and the Fresnel transition

functions with respect to arc length. Using the chain rule,

(@) _ 1f[asec(5) o 9~ dF[x-]]
a - - 5{_ dl F[X]“ec(T) d |
[ dsec (- 1

T -___&g_QF[X"'] + sec (—‘I;) ngﬁ] - } (808)

257




is the first derivative and

#Doi(@) _ {r%d 7) x4 2 S0 T) 41X
2

dl? di? dl dl
d?sec (L
+sec(2)d2F[X]]:F[ (Z)F[X*']

di? dl?

dsec( ) dF[X*] Ut &2F[X7]
+ 2 7 7 + sec (—é—) —r (809)

is the second derivative of the ITD half-plane diffraction coefficients with respect to
arc length. In order to place the final result in terms of auxiliary half-plane diffraction
coeflicients that have the same form as the UTD half-plane diffraction coefficients,

let:
_eimlt
Doy(Q) = —= Dun(@),, (8102)
dDa,h(Qc) - _e-—j‘rr/4 dﬁa,h(Ql)
d = ek d |, (8105)
@Don(Q) _ e &Don(Q)
T = T e (810c)
Therefore, substituting (805) and (807) into (810) and simplifying, we obtain
dD,n(Qc) _ dDsn(Qc
ZI(Q)Z é';(eQ)=0 (811)
and
d2Da,h(Qc) _ dZDa,h(Qc)
di? B dz?
= p® 8ccos1ﬁc]
= o)+
Deal@e) { [ pe(Qc)
Sl Ly 0)-piQy] (a2
A ps(Qe) T :

as the first two derivatives of the half-plane diffraction coefficients with respect to arc

length evaluated at the central diffraction point. We note that

—e=/* [ Flks,a(¥7)] _ Flks.a(¥})]
Da,h(Qc) = 2\/— { cos( ’ ) cos (\p+) }
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are the typical UTD half-plane diffraction coefficients for normal incidence. There
are also two auxiliary half-plane diffraction coefficients

o - 3553 () (5) 22

3 () ()] ) o

DD —e 34 [ Fylksca(¥7)] Fifksca(¥?))
w(Qe) = 2\/21rk{ cos( ) * cos( ) } (815)

which appear in (812), where ¥F = 1. F ¢/ and

and

UF
a(¥F) = 2 cos? (-2—°) . (816)
Also, the slope diffraction transition function is defined as
F,[z] = 2j2 {1 — F|z]} (817)

and the second derivative of ¥F with respect to arc length is

dz‘Il;F_{sin¢ccos¢c_ sin 1, } {sin¢écos¢é}
dz | pAQ)  spe(Qc) ACH

evaluated at the central diffraction point as given by (792).

(818)
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